Manhattan, KS, United States

Kansas State University

www.k-state.edu
Manhattan, KS, United States

Kansas State University, commonly shortened to Kansas State or K-State, is a public research university with its main campus in Manhattan, Kansas, United States. Kansas State was opened as the state's land-grant college in 1863 – the first public institution of higher learning in the state of Kansas. It had a record high enrollment of 24,766 students for the Fall 2014 semester.Branch campuses are located in Salina and Olathe. Salina houses the College of Technology and Aviation. The Olathe Innovation Campus is the academic research presence within the Kansas Bioscience Park, where graduate students participate in research bioenergy, animal health, plant science and food safety and security.The university is classified as a research university with high research by the Carnegie Classification of Institutions of Higher Education. Kansas State's academic offerings are administered through nine colleges, including the College of Veterinary Medicine and the College of Technology and Aviation in Salina. Graduate degrees offered include 65 master's degree programs and 45 doctoral degrees. Wikipedia.


Time filter

Source Type

Patent
University of Kansas and Kansas State University | Date: 2016-11-21

A microfluidic exosome profiling platform integrating exosome isolation and targeted proteomic analysis is disclosed. This platform is capable of quantitative exosomal biomarker profiling directly from plasma samples with markedly enhanced sensitivity and specificity. Identification of distinct subpopulation of patient-derived exosomes is demonstrated by probing surface proteins and multiparameter analyses of intravesicular biomarkers in the selected subpopulation. The expression of IGF-1R and its phosphorylation level in non-small cell lung cancer (NSCLC) patient plasma is assessed as a non-invasive alternative to the conventional biopsy and immunohistochemistry. Detection of ovarian cancer also is assessed. The microfluidic chip, which may be fabricated of a glass substrate and a layer of poly(dimethylsiloxane), includes a serpentine microchannel to mix a fluid and a microchamber for the collection and detection of exosomes.


Methods of characterizing nanoparticles, nanoparticle complexes, and their biomolecular interactions are provided. Concurrent excitation and emission wavelength scans are performed and the optimal fluorescence intensity for the intersect of these wavelengths is determined. The intersect is dependent upon the physical characteristics of the particle and can be used to verify, for example, attachment of biomolecules, amount of biomolecules present, and structure of the attached biomolecule.


Patent
Kansas State University and University of Minnesota | Date: 2015-05-29

A protein conferring resistance to Fusarium Head Blight disease (FHB) is described, along with the DNA sequence of the corresponding gene and mRNA copy (cDNA). The cDNA of Fhb1 gene can be used to produce genetically-modified plants having increased resistance to FHB, particularly in wheat, barley and other plants affected by the disease. The protein has antifungal properties and inhibits fungal growth, thereby providing a means for reducing DON toxin in grains. Conserved functional domains are identified in the protein. Genetically-modified plants having increased resistance FHB are also described, along with methods for producing such genetically-modified plants.


Patent
Kansas State University | Date: 2017-01-26

The present invention provides for compositions and methods for producing sorghum crop plants that are resistant to herbicides. In particular, the present invention provides for sorghum plants, plant tissues and plant seeds that contain altered acetolactate synthase (ALS) genes and proteins that are resistant to inhibition by herbicides that normally inhibit the activity of the ALS protein.


Patent
Kansas State University | Date: 2015-07-08

Polymer-derived ceramic composites are described herein. The composites are formed using hexagonal boron nitride nanosheet-functionalized silicon-based ceramic precursor polymers. The composites a matrix of a polymer-derived ceramic and hexagonal boron nitride nanosheets embedded therein. Silicon-derived ceramic precursors such as polysilazane and/or polysiloxane are used to create improved SiCN and/or SiOC ceramic composites.


Patent
Kansas State University | Date: 2017-01-26

The present invention provides for compositions and methods for producing sorghum crop plants that are resistant to herbicides. In particular, the present invention provides for sorghum plants, plant tissues and plant seeds that contain altered acetolactate synthase (ALS) genes and proteins that are resistant to inhibition by herbicides that normally inhibit the activity of the ALS protein.


Patent
Kansas State University | Date: 2017-04-03

The present invention provides for compositions and methods for producing crop plants that are resistant to herbicides. In particular, the present invention provides for sorghum plants, plant tissues and plant seeds that contain altered acetyl-CoA carboxylase (ACC) genes and proteins that are resistant to inhibition by herbicides that normally inhibit the activity of the ACC protein.


Patent
Kansas State University | Date: 2015-07-27

Methods for detecting biomarkers of inflammation, infection, and/or bacterial activity in dairy production, which indicate issues with the milk itself or issues related to the health of the cow. The methods generally comprise contacting a milk sample with a nanoplatform assembly to create an assay solution, and detecting spectral changes in the assay solution that are triggered by enzymatic activity (when present) in the sample. The nanoplatform assembly comprises a first particle, a second particle, and a linkage therebetween, wherein the linkage comprises a protease consensus sequence (the sequence of amino acids cleaved by the protease), or an ester linkage (cleaved by a protease or lipase). A plurality of second particles can also be linked to the first particle. Test strips are also described, which undergo a visual color change in the presence of the target enzyme in the milk sample.


Aikens C.M.,Kansas State University
Journal of Physical Chemistry Letters | Year: 2011

Gold and silver nanoclusters have unique molecule-like electronic structure and a nonzero HOMO-LUMO gap. Recent advances in X-ray crystal structure determination have led to a new understanding of the geometric structure of gold nanoparticles, with significant implications for electronic structure. The superatom model has been effectively employed to explain properties such as one- and two-photon optical absorption, circular dichroism, EPR spectra, and electronic effects introduced by nanoparticle doping. Future investigations may also lead to an understanding of nanoparticle luminescence, excited-state dynamics, and the metallic to molecular transition. © 2010 American Chemical Society.


Berry V.,Kansas State University
Carbon | Year: 2013

This review discusses the genesis of impermeability in graphene and its extraordinary applications in fluid-encasement for wet electron-microscopy, selective gas-permeation, nanopore-bio-diffusion, and barrier coating against rusting and environmental hazards. As the thinnest material, graphene is composed of sp2 hybridized carbon atoms linked to one another in a 2D honeycomb lattice with high electron-density in its aromatic rings, which blocks-off all molecules. This phenomena, in combination with its strong structure (C-C bond energy = 4.9 eV and intrinsic strength = 43 N/m) makes graphene the most impermeable membrane (thinnest membrane that is impermeable). Apart from the applications mentioned above, graphene coatings have enabled fundamental studies on chemical processes and fluid structures. For example, graphene can allow electron imaging of nanocrystal nucleation process and water-lattice-structure due to its impermeability. Along with being the strongest, most conductive, and optically-absorbing material (∼2.3% optical absorbance), graphene's impermeability opens a wide range of exciting opportunities. © 2013 Elsevier Ltd. All rights reserved.

Loading Kansas State University collaborators
Loading Kansas State University collaborators