Time filter

Source Type

Ashida R.,Kyoto University | Nagaya S.,Kyoto University | Miura K.,Kyoto University | Kubota Y.,Nippon Steel & Sumitomo Metal Corporation | And 2 more authors.
ISIJ International | Year: 2014

The authors have proposed a high temperature solvent fractionation method that can separate coals into several fractions having different molecular weight without destroying coal structure. In this study the method was applied to characterization of low-grade coals and binder during their co-pyrolysis to clarify chemical interaction between them. When a sub-bituminous coal or a slightly-caking coal was copyrolyzed with asphalt pitch (ASP), it was found that smaller-molecular weight compounds less than 800 in molecular weight which were abundant in ASP could be added by appearance as can be expected from the calculation assuming no interaction between the coals and ASP. The added smaller-molecular weight compounds contributed to the reduction of viscosity of the pyrolyzing coal. The possibility was also suggested that part of smaller-molecular weight compounds in ASP were converted to heavier compounds whereas some smaller-molecular weight compounds were formed from coals to compensate the loss of such compounds derived from ASP. It was also shown that oxygen existent in the heaviest fraction of the low-grade coals was removed to form H2O and CO2 by chemical interaction with ASP. This interaction was found to contribute to the reduction of shrinkage of low-grade coals during carbonization. © 2014 ISIJ.


Ueki Y.,EcoTopia Science Institute | Nunome Y.,EcoTopia Science Institute | Yoshiie R.,Nagoya University | Naruse I.,EcoTopia Science Institute | And 2 more authors.
ISIJ International | Year: 2014

The price of caking coal, which is used in the production of metallurgical coke, has risen in recent years. Also of concern is the amount of CO2 emitted from steel industries, comprising approximately 15% of total CO2 emissions in Japan. Therefore, CO2 emissions from the ironmaking process should be reduced to avoid global warming. In this work, fundamental research is conducted on the effect of adding woody biomass to the properties of coke, with the aim of possibly using woody biomass, which is carbon neutral, as a raw material in coke-making. Experimental results showed that the connectivity between coal particles in the coke sample during carbonization and coke strength drastically decrease by adding woody biomass to caking coal. However, the coke properties of the coke sample with added woody biomass could be improved by removing the partly volatile matter of woody biomass before mixing with caking coal, and as a result, the possibility of using woody biomass as a raw material for coke-making with prior carbonization at temperatures of more than 500°C was found. © 2014 ISIJ.


Nishimura M.,Kansai Coke and Chemicals Co. | Kotani A.,Kansai Coke and Chemicals Co.
Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan | Year: 2010

Synopsis : Due to enlargement, stabilized and efficient operation of blast furnaces (BF), cokes with high strength have been required in BF in recent years. Recently, on the coke reactivity with carbon dioxide, it is reported that high reactive cokes can improve the reduction of iron ore in BF and reduce carbon dioxide emissions from BF. These coke strength (DI) and coke reactivity (CRI) have been primarily controlled by the blending operation of coals in coke production. However, it is difficult to get the cokes which possess both high DI and high CRI, because the blending operation for increasing DI usually results in the decrease of CRI. To get high DI, we investigated the effect of coating on coke with polyvinyl alcohol (PVA) on coke strength. Coke particles were dipped into the PVA aqueous solution and dried out. DI and CRI/CSR of the PVA coated coke prepared by the above method were measured. Those results showed that 0.011 g/g-coke PVA coating on the surface of the coke resulted in the increase of the DI by 4.2 points and no change in the CRI/CSR values. It may be possible to control the coke strength (DI) and the coke reactivity (CRI) independently without any change of coal blending by using our new method.


Nishibata Y.,Kansai Coke and Chemicals Co. | Oota K.,Kansai Coke and Chemicals Co. | Nishimura M.,Kansai Coke and Chemicals Co.
Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy | Year: 2011

It is well known that the excessive deposition of pyrolytic carbon on coke oven walls causes some troubles such as increase of pushing force during discharging of coke from coke chamber and damage to the oven walls. A purpose of this study is to clarify the influence of coal properties and temperature on carbon deposition rate on oven wall. The effect of the volatile mater, pyrolysis gas components of coal and the temperature of the wall on carbon deposition rate was quantitatively examined. By using this empirical formula, the correlation of calculated carbon deposition rate and change of pushing force was confirmed.


Patent
Kansai Coke And Chemicals Co. and MC Evolve Technologies Corporation | Date: 2013-07-25

The present invention provides activated carbon having excellent properties. The present invention consists of activated carbon, the key feature of which is an active surface area of at least 80 m^(2)/g. In one preferred embodiment, the activated carbon consists of activated carbon fibers and is used for adsorption, and in a another preferred embodiment, the activated carbon also has a moisture adsorption rate (((mass Bmass A)/mass A)/100%) of at least 40%, said moisture adsorption rate being determined from the mass (A) of the activated carbon after being dried for 24 hours at 115 C. and the mass (B) of the activated carbon after being kept for 24 hours in a thermo-hygrostat set to a temperature 25 C. and a relative humidity of 60%.


Patent
Kobe Steel and Kansai Coke And Chemicals Co. | Date: 2010-08-26

The present invention provides a biological treatment method of biologically treating the subject water containing phenol, thiocyanate and the like, which improves the quality of treated water, while suppressing a reduction in treatment efficiency. As a means for achieving the aforementioned object, the present invention relates to a biological treatment method including introducing subject water containing a COD component, wherein the COD component is at least one of phenol and thiocyanate, into a biological treatment tank containing sludge containing bacteria capable of decomposing the COD component to thereby biologically treat the COD component with the bacteria, wherein, before the introduction of the subject water into the biological treatment tank, a step of counting the total number of bacteria contained in the sludge is carried out, so that the amount of the COD component loaded on a single bacterium per unit time can be controlled within a predetermined range.


Patent
Kansai Coke And Chemicals Co. and MC Evolve Technologies Corporation | Date: 2013-08-09

The present invention provides activated carbon with which hydrophilicity is excellent and the amount of steam adsorbed is increased, and provides a method for producing this activated carbon. This activated carbon is characterized in that the amount of basic functional groups in the activated carbon is 0.470 meq/m^(2 )or greater. Preferably the amount of basic groups per specific surface area of activated carbon is 0.200 eq/m^(2 )or greater and the ratio of the amount of basic functional groups and the amount of acidic functional groups (basic functional groups/acidic functional groups) is 1.00 or greater. This method for producing activated carbon is characterized in comprising a step for imparting basic functional groups by bringing the activated carbon into contact with a basic substance. According to a preferred embodiment, the method comprises a step for heating the resulting activated carbon in an insert atmosphere.


Patent
Kansai Coke And Chemicals Co. | Date: 2013-10-02

A coke oven monitoring system capable of quantitatively monitoring changes in the state of the furnace walls in a coke oven with good accuracy has: an oven width measurement device (6) that measures the oven width; an in-furnace observation device (7) that photographs the oven walls; and a computer (10) that analyzes oven width data measured by the oven width measurement device, and oven wall image data captured by the in-furnace observation device. The computer is characterized by including: a oven width/oven wall image data extraction unit (10a) that extracts width data and oven wall image data in different extrusion cycles for the same location of the same kiln; and an oven width/oven wall image data analysis and processing unit (10b) that determines oven wall abnormalities when the oven width data and oven wall image data obtained in the current extrusion cycle have both changed relative to the oven width data and oven wall image data obtained in past extrusion cycles in such a manner as to exceed established values. A coke oven monitoring system capable of quantitatively monitoring changes in the state of the furnace walls in a coke oven with good accuracy has: an oven width measurement device (6) that measures the oven width; an in-furnace observation device (7) that photographs the oven walls; and a computer (10) that analyzes oven width data measured by the oven width measurement device, and oven wall image data captured by the in-furnace observation device. The computer is characterized by including: a oven width/oven wall image data extraction unit (10a) that extracts width data and oven wall image data in different extrusion cycles for the same location of the same kiln; and an oven width/oven wall image data analysis and processing unit (10b) that determines oven wall abnormalities when the oven width data and oven wall image data obtained in the current extrusion cycle have both changed relative to the oven width data and oven wall image data obtained in past extrusion cycles in such a manner as to exceed established values.


A coke oven monitoring system capable of quantitatively monitoring changes in the state of the furnace walls in a coke oven with good accuracy has: an oven width measurement device (6) that measures the oven width; an in-furnace observation device (7) that photographs the oven walls; and a computer (10) that analyzes oven width data measured by the oven width measurement device, and oven wall image data captured by the in-furnace observation device. The computer is characterized by including: a oven width/oven wall image data extraction unit (10a) that extracts width data and oven wall image data in different extrusion cycles for the same location of the same kiln; and an oven width/oven wall image data analysis and processing unit (10b) that determines oven wall abnormalities when the oven width data and oven wall image data obtained in the current extrusion cycle have both changed relative to the oven width data and oven wall image data obtained in past extrusion cycles in such a manner as to exceed established values. A coke oven monitoring system capable of quantitatively monitoring changes in the state of the furnace walls in a coke oven with good accuracy has: an oven width measurement device (6) that measures the oven width; an in-furnace observation device (7) that photographs the oven walls; and a computer (10) that analyzes oven width data measured by the oven width measurement device, and oven wall image data captured by the in-furnace observation device. The computer is characterized by including: a oven width/oven wall image data extraction unit (10a) that extracts width data and oven wall image data in different extrusion cycles for the same location of the same kiln; and an oven width/oven wall image data analysis and processing unit (10b) that determines oven wall abnormalities when the oven width data and oven wall image data obtained in the current extrusion cycle have both changed relative to the oven width data and oven wall image data obtained in past extrusion cycles in such a manner as to exceed established values.


Patent
Kansai Coke And Chemicals Co. and Kobe Steel | Date: 2012-07-04

It is an object of the present invention to provide a biological treatment method of biologically treating the subject water containing phenol, thiocyanate and the like, which improves the quality of treated water, while suppressing a reduction in treatment efficiency. As a means for achieving the aforementioned object, the present invention relates to a biological treatment method including introducing subject water containing a COD component, wherein the COD component is at least one of phenol and thiocyanate, into a biological treatment tank containing sludge containing bacteria capable of decomposing the COD component to thereby biologically treat the COD component with the bacteria, wherein, before the introduction of the subject water into the biological treatment tank, a step of counting the total number of bacteria contained in the sludge is carried out, so that the amount of the COD component loaded on a single bacterium per unit time can be controlled within a predetermined range.

Loading Kansai Coke and Chemicals Co. collaborators
Loading Kansai Coke and Chemicals Co. collaborators