Entity

Time filter

Source Type


Shimamura M.,Kyoto Institute of Technology | Shimamura M.,Kankyo Eisei Yakuhin Co. | Kyotani A.,Kyoto Institute of Technology | Azuma Y.,Kyoto Prefectural University of Medicine | And 8 more authors.
Experimental Cell Research | Year: 2014

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive muscular weakness. Fused in Sarcoma (FUS) that has been identified in familial ALS is an RNA binding protein that is normally localized in the nucleus. However, its function in vivo is not fully understood. Drosophila has Cabeza (Caz) as a FUS homologue and specific knockdown of Caz in the eye imaginal disc and pupal retina using a GMR-GAL4 driver was here found to induce an abnormal morphology of the adult compound eyes, a rough eye phenotype. This was partially suppressed by expression of the apoptosis inhibitor P35. Knockdown of Caz exerted no apparent effect on differentiation of photoreceptor cells. However, immunostaining with an antibody to Cut that marks cone cells revealed fusion of these and ommatidia of pupal retinae. These results indicate that Caz knockdown induces apoptosis and also inhibits differentiation of cone cells, resulting in abnormal eye morphology in adults. Mutation in EGFR pathway-related genes, such as rhomboid-1, rhomboid-3 and mirror suppressed the rough eye phenotype induced by Caz knockdown. Moreover, the rhomboid-1 mutation rescued the fusion of cone cells and ommatidia observed in Caz knockdown flies. The results suggest that Caz negatively regulates the EGFR signaling pathway required for determination of cone cell fate in Drosophila. © 2014 Elsevier Inc.


Yoshioka Y.,Kyoto Institute of Technology | Yoshioka Y.,Peter MacCallum Cancer Center | Tue N.T.,Kyoto Institute of Technology | Fujiwara S.,Kyoto Institute of Technology | And 5 more authors.
Genesis | Year: 2012

The Drosophila Jun N-terminal kinase (JNK) gene basket (bsk) promoter contains a DNA replication-related element (DRE)-like sequence, raising the possibility of regulation by the DNA replication-related element-binding factor (DREF). Chromatin immunoprecipitation assays with anti-DREF IgG showed the bsk gene promoter region to be effectively amplified. Luciferase transient expression assays revealed the DRE-like sequence to be important for bsk gene promoter activity, and knockdown of DREF decreased the bsk mRNA level and the bsk gene promoter activity. Furthermore, knockdown of DREF in the notum compartment of wing discs by pannier-GAL4 and UAS-DREFIR resulted in a split thorax phenotype. Monitoring of JNK activity in the wing disc by LacZ expression in a puckered (puc)-LacZ enhancer trap line revealed the reduction in DREF knockdown clones. These findings indicate that DREF is involved in regulation of Drosophila thorax development via actions on the JNK pathway. © 2012 Wiley Periodicals, Inc.


Suyari O.,Kyoto Institute of Technology | Suyari O.,Chromatin | Kawai M.,Kyoto Institute of Technology | Ida H.,Kyoto Institute of Technology | And 4 more authors.
Gene | Year: 2012

In Drosophila, the 255. kDa catalytic subunit (dpolεp255) and the 58. kDa subunit of DNA polymerase ε (dpolεp58) have been identified. The N-terminus of dpolεp255 carries well-conserved six DNA polymerase subdomains and five 3'→5' exonuclease motifs as observed with Polε in other species. We here examined roles of dpolεp255 during Drosophila development using transgenic fly lines expressing double stranded RNA (dsRNA). Expression of dpolεp255 dsRNA in eye discs induced a small eye phenotype and inhibited DNA synthesis, indicating a role in the G1-S transition and/or S-phase progression of the mitotic cycle. Similarly, expression of dpolεp255 dsRNA in the salivary glands resulted in small size and endoreplication defects, demonstrating a critical role in endocycle progression. In the eye disc, defects induced by knockdown of dpolεp255 were rescued by overexpression of the C-terminal region of dpolεp255, indicating that the function of this non-catalytic domain is conserved between yeast and Drosophila. However, this was not the case for the salivary gland, suggesting that the catalytic N-terminal region is crucial for endoreplication and its defect cannot be complemented by other DNA polymerases. In addition, several genetic interactants with dpolεp255 including genes related to DNA replication such as RFC, DNA primase, DNA polη, Mcm10 and Psf2 and chromatin remodeling such as Iswi were also identified. © 2011 Elsevier B.V.


Le N.Q.,Kanazawa University | Binh N.T.,Kanazawa University | Binh N.T.,Kankyo Eisei Yakuhin Co. | Takarada T.,Kanazawa University | And 3 more authors.
Journal of Pharmacological Sciences | Year: 2013

Pre-chondrocytes undergo cellular differentiation stages during chondrogenesis under the influence by different transcription factors such as sry-type high mobility group box-9 (Sox9) and runt-related transcription factor-2 (Runx2). We have shown upregulation by parathyroid hormone (PTH) of the clock gene Period-1 (Per1) through the cAMP/protein kinase A signaling pathway in pre-chondrocytic ATDC5 cells. Here, we investigated the role of Per1 in the suppression of chondrogenic differentiation by PTH. In ATDC5 cells exposed to 10 nM PTH, a drastic but transient increase in Per1 expression was seen only 1 h after addition together with a prolonged decrease in Sox6 levels. However, no significant changes were induced in Sox5 and Runx2 levels in cells exposed to PTH. In stable Per1 transfectants, a significant decrease in Sox6 levels was seen, with no significant changes in Sox5 and Sox9 levels, in addition to the inhibition of gene transactivation by Sox9 allies. Knockdown of Per1 by siRNA significantly increased the Sox6 and type II collagen levels in cells cultured for 24-60 h. These results suggest that Per1 plays a role in the suppressed chondrocytic differentiation by PTH through a mechanism relevant to negative regulation of transactivation of the Sox6 gene during chondrogenesis. © The Japanese Pharmacological Society.


Ida H.,Kyoto Institute of Technology | Ida H.,Kankyo Eisei Yakuhin Co. | Suyari O.,Kyoto Institute of Technology | Shimamura M.,Kyoto Institute of Technology | And 3 more authors.
Tohoku Journal of Experimental Medicine | Year: 2013

Heme oxygenase (HO) is a rate-limiting step of heme degradation, which catalyzes the conversion of heme into biliverdin, iron, and CO. HO has been characterized in microorganisms, insects, plants, and mammals. The mammalian enzyme participates in adaptive and protective responses to oxidative stress and various inflammatory stimuli. The present study reports that eye imaginal disc-specific knockdown of the Drosophila HO homologue (dHO) conferred serious abnormal eye morphology in adults, resulting in the generation of reactive oxygen species and apoptosis in third-instar larvae. Oxidative stress frequently induces DNA lesions that are recognized by damage sensors, including ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and rad3-related (ATR) proteins. The knockdown of dHO took place in G0/ G1-arrested cells posterior to the morphogenetic furrow and thus prevented these cells from entering S-phase, with an increase in the level of histone H2A.V, a DNA damage marker. Moreover, the knockdown of dHO resulted in the enhancement of the rough eye phenotype in ATM-deficient flies or was lethal in ATR-deficient flies. These results indicate that dHO functions in control of the signal pathway of DNA damage. On the other hand, genetic crosses with a collection of Drosophila defciency stocks allowed us to identify eight genomic regions, each deletion of which caused suppression of the rough eye phenotype induced by dHO knockdown. This information should facilitate the identification of HO regulators in Drosophila and clarifcation of the roles of HO in eye development. © 2013 Tohoku University Medical Press.

Discover hidden collaborations