Kanebo Cosmetics Inc.

Kawasaki, Japan

Kanebo Cosmetics Inc.

Kawasaki, Japan
Time filter
Source Type

Yuki T.,Kanebo Cosmetics Inc. | Yoshida H.,Kanebo Cosmetics Inc. | Akazawa Y.,Kanebo Cosmetics Inc. | Komiya A.,Kanebo Cosmetics Inc. | And 2 more authors.
Journal of Immunology | Year: 2011

The epidermis has developed physical and immunological barriers that prevent infiltration of deleterious chemicals and pathogens. As a first step to understanding the relationship between these barriers, we investigated whether TLR2 activation functionally alters tight junctions (TJs) in cultured human keratinocytes. Stimulation with peptidoglycan, a ligand for TLR2, elevated the TJ-associated barrier in the space of 3 h. The increase in TJ-associated barrier function due to peptidoglycan stimulation was suppressed by the knockdown of TLR adaptor MyD88 or the pretreatment with TLR2-neutralizing Ab, indicating that TLR2 activation enhanced TJ-associated barrier. One and 3 h after peptidoglycan stimulation, expression levels of the TJ proteins occludin, claudin-1, claudin-4, and ZO-1 were unchanged. However, immunoprecipitation studies demonstrated that the association of phosphoatypical protein kinase Cz/i, crucial for TJ biogenesis, with occludin was increased. Significantly, inhibition of atypical protein kinase Cζ/ι activity completely blocked the immediate elevation of the TJ-associated barrier. Finally, peptidoglycan was applied to the stratum corneum surface of a human skin equivalent, and the TJ barrier was evaluated. In the space of 3 h after the stimulation, the amount of intercellular tracer in the stratum corneum incubated from the dermal side was reduced, indicating that the TJ barrier is strengthened via TLR2 activation. Taken together, our findings indicated that infiltration of pathogens into the epidermis immediately enhanced TJ function via TLR2 signaling. Furthermore, the dynamically controlled TJs in skin are considered fundamental in preventing further invasion of pathogens and maintaining cutaneous barrier homeostasis. Copyright © 2011 by The American Association of Immunologists, Inc.

Yoshida H.,Kanebo Cosmetics Inc. | Nagaoka A.,Kanebo Cosmetics Inc. | Kusaka-Kikushima A.,Kanebo Cosmetics Inc. | Tobiishi M.,Kanebo Cosmetics Inc. | And 7 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2013

Hyaluronan (HA) has an extraordinarily high turnover in physiological tissues, and HA degradation is accelerated in inflammatory and neoplastic diseases. CD44 (a cell surface receptor) and two hyaluronidases (HYAL1 and HYAL2) are thought to be responsible for HA binding and degradation; however, the role of these molecules in HA catabolism remains controversial. Here we show that KIAA1199, a deafness gene of unknown function, plays a central role in HA binding and depolymerization that is independent of CD44 and HYAL enzymes. The specific binding of KIAA1199 to HA was demonstrated in glycosaminoglycan-binding assays. We found that knockdown of KIAA1199 abolished HA degradation by human skin fibroblasts and that transfection of KIAA1199 cDNA into cells conferred the ability to catabolize HA in an endo-β-N-acetylglucosaminidase- dependent manner via the clathrin-coated pit pathway. Enhanced degradation of HA in synovial fibroblasts from patients with osteoarthritis or rheumatoid arthritis was correlated with increased levels of KIAA1199 expression and was abrogated by knockdown of KIAA1199. The level of KIAA1199 expression in uninflamed synovium was less than in osteoarthritic or rheumatoid synovium. These data suggest that KIAA1199 is a unique hyaladherin with a key role in HA catabolism in the dermis of the skin and arthritic synovium.

Sasaki M.,Kanebo Cosmetics Inc. | Kondo M.,Kanebo Cosmetics Inc. | Sato K.,Kanebo Cosmetics Inc. | Umeda M.,Kanebo Cosmetics Inc. | And 4 more authors.
Pigment Cell and Melanoma Research | Year: 2014

Rhododendrol, an inhibitor of melanin synthesis developed for lightening/whitening cosmetics, was recently reported to induce a depigmentary disorder principally at the sites of repeated chemical contact. Rhododendrol competitively inhibited mushroom tyrosinase and served as a good substrate, while it also showed cytotoxicity against cultured human melanocytes at high concentrations sufficient for inhibiting tyrosinase. The cytotoxicity was abolished by phenylthiourea, a chelator of the copper ions at the active site, and by specific knockdown of tyrosinase with siRNA. Hence, the cytotoxicity appeared to be triggered by the enzymatic conversion of rhododendrol to active product(s). No reactive oxygen species were detected in the treated melanocytes, but up-regulation of the CCAAT-enhancer-binding protein homologous protein gene responsible for apoptosis and/or autophagy and caspase-3 activation were found to be tyrosinase dependent. These results suggest that a tyrosinase-dependent accumulation of ER stress and/or activation of the apoptotic pathway may contribute to the melanocyte cytotoxicity. © 2014 The Authors.

Nakagawa N.,Innovative Beauty Science Laboratory | Naito S.,Kao Corporation | Yakumaru M.,Kanebo Cosmetics Inc. | Sakai S.,Innovative Beauty Science Laboratory
Experimental Dermatology | Year: 2011

Natural moisturizing factors (NMFs) play an important role in maintaining the physical properties of the stratum corneum (SC). The relationship between SC water content and NMFs has long been investigated. Recently, we demonstrated that potassium lactate as an NMF increased SC water content more than sodium lactate did. The details of the moisturizing mechanism of NMFs, however, were not revealed. We, therefore, investigated the cause of the SC moisturizing effect of potassium lactate in comparison with sodium lactate. Using differential scanning calorimetry, we found that potassium lactate increased the bound water content of plantar SC more than what sodium lactate did. We also found, however, that the bound water content of the potassium lactate solution was less than that of the sodium lactate solution, suggesting that potassium lactate increased the water molecules interacting with SC components. Moreover, potassium lactate increased the ratio of hydrogen/deuterium exchange at 1340/cm, which represents the OH bending mode, of plantar SC spectra obtained by the attenuated total reflectance infrared spectroscopy. We assign this band to the OH group of the serine residue. These results suggest that potassium lactate increases the water-holding capacity of the SC by increasing interaction between water molecules and the OH group of serine in SC keratin. © 2011 John Wiley & Sons A/S.

Kizawa K.,Kanebo Cosmetics Inc. | Takahara H.,Ibaraki University | Unno M.,Ibaraki University | Heizmann C.W.,University of Zürich
Biochimie | Year: 2011

Epithelial Ca 2+-regulation, which governs cornified envelope formation in the skin epidermis and hair follicles, closely coincides with the expression of S100A3, filaggrin and trichohyalin, and the post-translational modification of these proteins by Ca 2+-dependent peptidylarginine deiminases. This review summarizes the current nomenclature and evolutional aspects of S100 Ca 2+-binding proteins and S100 fused-type proteins (SFTPs) classified as a separate protein family with special reference to the molecular structure and function of S100A3 dominantly expressed in hair cuticular cells. Both S100 and SFTP family members are identified by two distinct types of Ca 2+-binding loops in an N-terminal pseudo EF-hand motif followed by a canonical EF-hand motif. Seventeen members of the S100 protein family including S100A3 are clustered with seven related genes encoding SFTPs on human chromosome 1q21, implicating their association with epidermal maturation and diseases. Human S100A3 is characterized by two disulphide bridges and a preformed Zn 2+-pocket, and may transfer Ca 2+ ions to peptidylarginine deiminases after its citrullination-mediated tetramerization. Phylogenetic analysis utilizing current genome databases suggests that divergence of the S100A3 gene coincided with the emergence of hair, a defining feature of mammals, and that the involvement of S100A3 in epithelial Ca 2+-cycling occurred as a result of a skin adaptation in terrestrial mammals. © 2011 Elsevier Masson SAS. All rights reserved.

Akazawa Y.,Kanebo Cosmetics Inc. | Yuki T.,Kanebo Cosmetics Inc. | Yoshida H.,Kanebo Cosmetics Inc. | Sugiyama Y.,Kanebo Cosmetics Inc. | Inoue S.,Kanebo Cosmetics Inc.
Skin Pharmacology and Physiology | Year: 2013

The transient receptor potential cation channel, subfamily V (TRPV), is expressed in the epidermis and considered to be a sensor of extrinsic stimuli such as temperature and other physical or chemical factors. In this study, we examined whether or not the activation of TRPVs by their agonists alters the epidermal tight junction (TJ) function in cultured human epidermal keratinocytes. Reverse transcription-polymerase chain reaction (RT-PCR) analyses showed that mRNA for TRPV1, 3 and 4 were expressed in differentiated keratinocytes in which TJs had formed. Stimulation of the keratinocytes with a TRPV4 agonist (4α-phorbol 12, 13-didecanoate, 4α-PDD) strengthened the TJ-associated barrier, analyzed by means of transepithelial electric resistance measurements and flux measurements of the paracellular tracer. Stimulation with TRPV1 and TRPV3 agonists did not have the same result. Simultaneously, the 4α-PDD-stimulated keratinocytes showed an upregulation of TJ structural proteins, occludin and claudin-4, and TJ regulatory factors, phospho-atypical PKCζ/ι. It was also observed that the amounts of occludin and phospho-atypical PKCζ/ι complex were higher in 4α-PDD stimulated keratinocytes. In conclusion, we demonstrated that the activation of TRPV4 strengthened the TJ-associated barrier of epidermal cells. It was also suggested that the upregulation of TJ structural proteins and/or the posttranslational modification of TJ structural proteins by phospho-atypical PKCζ/ι are responsible for the enhancement of TJ function. Our study supports the hypothesis that TJs change their function in response to a change in the external environment sensed through TRPVs. Copyright © 2012 S. Karger AG, Basel.

Kizawa K.,Kanebo Cosmetics Inc.
Methods in molecular biology (Clifton, N.J.) | Year: 2013

High quantity and quality of recombinant Ca(2+)-binding proteins are required to study their molecular interactions, self-assembly, posttranslational modifications, and biological activities to elucidate Ca(2+)-dependent cellular signaling pathways. S100A3 is a unique member of the S100 protein family with the highest cysteine content (10%). This protein, derived from human hair follicles and cuticles, is characterized by an N-terminal acetyl group and irreversible posttranslational citrullination by peptidylarginine deiminase causing its homotetramer assembly. Insect cells, capable of introducing eukaryotic N-terminus and disulfide bonds, are an appropriate host in which to express this cysteine-rich protein. Four out of ten cysteines in the recombinant S100A3 form two intramolecular disulfide bridges that modulate its Ca(2+)-affinity. Three free thiol groups located at the C-terminus are predicted to form the high-affinity Zn(2+)-binding site. Citrullination of specific arginine residues in native S100A3 can be mimicked by site-directed mutagenic substitution of Arg/Ala. This chapter details our procedures used for the purification and characterization of the human S100A3 protein and its pseudo citrullinated forms expressed in insect cells.

Yoshida H.,Kanebo Cosmetics Inc. | Nagaoka A.,Kanebo Cosmetics Inc. | Nakamura S.,Kanebo Cosmetics Inc. | Tobiishi M.,Kanebo Cosmetics Inc. | And 2 more authors.
FEBS Letters | Year: 2014

Recently, we disclosed that KIAA1199-mediated hyaluronan (HA) depolymerization requires an acidic cellular microenvironment (e.g. clathrin-coated vesicles or early endosomes), but no information about the structural basis underlying the cellular targeting and functional modification of KIAA1199 was available. Here, we show that the cleavage of N-terminal 30 amino acids occurs in functionally matured KIAA1199, and the deletion of the N-terminal portion results in altered intracellular trafficking of the molecule and loss of cellular HA depolymerization. These results suggest that the N-terminal portion of KIAA1199 functions as a cleavable signal sequence required for proper KIAA1199 translocation and KIAA1199-mediated HA depolymerization. © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Nakagawa N.,Kanebo Cosmetics Inc. | Matsumoto M.,Kanebo Cosmetics Inc. | Sakai S.,Kanebo Cosmetics Inc.
Skin Research and Technology | Year: 2010

Background/purpose: Dermal water plays an important role in the physical properties of the skin. Recently, researchers have attempted to directly measure the dermal water content in vivo using magnetic resonance imaging, near infrared spectroscopy, and Raman spectroscopy. However, these methods have limitations. Although confocal Raman spectroscopy has been developed to measure the water content in the skin, no reports have suggested that this instrument can measure the dermal water content. This report describes a method for measuring the dermal water content in vivo using confocal Raman spectroscopy. Methods: We used a confocal Raman spectrometer and adjusted the laser exposure time and depth increments according to the skin depth. Age-related changes in the dermal water content of the forearm were examined in 30 young and 30 elderly male subjects. Diurnal changes in the dermal water content of the forearm were examined in 12 elderly male subjects. Results: Adjusting the exposure time and depth increment dramatically improved the signal-to-noise ratios of the Raman spectra. Elderly dermis had significantly higher water content than young dermis. Moreover, the dermal water content displayed a diurnal change. Conclusion: This study demonstrates that the dermal water content can be measured in vivo using confocal Raman spectroscopy. © 2009 John Wiley & Sons A/S.

Yuki T.,Kanebo Cosmetics Inc. | Komiya A.,Kanebo Cosmetics Inc. | Kusaka A.,Kanebo Cosmetics Inc. | Kuze T.,Kanebo Cosmetics Inc. | And 2 more authors.
Journal of Dermatological Science | Year: 2013

Background: The stratum corneum (SC) is a well-known structure responsible for the cutaneous barrier. Tight junctions (TJs) function as a paracellular barrier beneath the SC and are involved in the cutaneous barrier. It remains unclear how TJs are involved in the cutaneous barrier. Objective: In order to clarify the role of TJs in the cutaneous barrier, we investigated skin equivalent models with disrupted TJ barriers focusing on the SC. Methods: Skin equivalents with disrupted TJ barriers were established using GST-C-CPE, a peptide with specific inhibitory action against specific claudins. The changes of the SC barrier in the skin equivalents with disrupted TJ barriers were investigated and compared with control skin equivalents. Results: An outside-to-inside skin barrier assay revealed a defective SC barrier in skin equivalents with disrupted TJ barriers. A detailed examination of the SC revealed an increase in the pH of the SC in the skin equivalent with disrupted TJ barriers. An electron microscopy showed the failure of lamellar structures to mature and the failure of keratohyalin granules to degrade in the skin equivalents with disrupted TJ barriers. A thin layer chromatography analysis showed an increase in polar lipids and a decrease in non-polar lipids. A western blot analysis showed an increase in filaggrin dimer and trimer and a decrease in filaggrin monomer. Conclusion: We found that disrupted TJs obstructed the SC formation responsible for the cutaneous barrier. Our study indicates the possibility that impaired TJ barriers affect polar lipids and profilaggrin processing by disturbing the pH condition of the SC. © 2012 Japanese Society for Investigative Dermatology.

Loading Kanebo Cosmetics Inc. collaborators
Loading Kanebo Cosmetics Inc. collaborators