Kalyani, India
Kalyani, India

The University Of Kalyani, established in 1960, is a state-government administered, affiliating and research university in Nadia district of West Bengal, India. It offers courses at the undergraduate and post-graduate levels. Wikipedia.

Time filter
Source Type

Saha S.K.,Kalyani University | Khuda-Bukhsh A.R.,Kalyani University
European Journal of Pharmacology | Year: 2013

Several natural products and their derivatives, either in purified or structurally identified form, exhibit immense pharmacological and biological properties, some of them showing considerable anticancer potential. Although the molecular mechanisms of action of some of these products are yet to be elucidated, extensive research in this area continues to generate new data that are clinically exploitable. Recent advancement in molecular biology, high throughput screening, biomarker identifications, target selection and genomic approaches have enabled us to understand salient interactions of natural products and their derivatives with cancer cells vis-à-vis normal cells. In this review we highlight the recent approaches and application of innovative technologies made to improve quality as well as efficiency of structurally identified natural products and their derivatives, particularly in small molecular forms capable of being used in "targeted therapies" in oncology. These products preferentially involve multiple mechanistic pathways and overcome chemo-resistance in tumor types with cumulative action. We also mention briefly a few physico-chemical features that compare natural products with drugs in recent natural product discovery approaches. We further report here a few purified natural products as examples that provide molecular interventions in cancer therapeutics to give the reader a glimpse of the current trends of approach for discovering useful anticancer drugs. © 2013 Elsevier B.V. All rights reserved.

Majumdar K.C.,Kalyani University | Majumdar K.C.,Tezpur University | Mondal S.,Kalyani University
Chemical Reviews | Year: 2011

Some of the recent developments in the synthesis of fused sultams are discussed. A cascade ring-closure metathesis/isomerization and subsequent radical cyclization was utilized to generate tricyclic sultams from bisallylsulfonamides by Piva and co-workers. de Meijere and co-workers developed a facile synthesis of tricyclic sultams by cycloisomerization of 4,9-diheterododecadienyne followed by intramolecular [4 + 2]-cycloaddition. A synthesis of condensed sultams deriving from intramolecular 1,3-dipolar cycloadditions of nitrones was described by Yamamoto and co-workers. Landry and co-workers reported the synthesis of the tetracyclic N-8-quinolinyl benzenesultam, a novel nuclear factor kappa B (NF-kB) inhibitor. In 2004, Ley and co-workers developed the total synthesis of the cytotoxic antitumor natural product epothilone C by coupling of the three fragments.

Ghosh R.,Kalyani University
Molecular and cellular biochemistry | Year: 2012

Several acridine derivatives have been screened for their therapeutic potential and some are already established as antiprotozoan, antibacterial or anticancer agents. However, phenyl derivative at C-9 position of acridine had remained unexplored for their biological activity so far. In this report, we present our findings with 9-phenyl acridine (ACPH) as an anticancer agent. Both A375 and HeLa, two human cancer cell lines, were more sensitive to ACPH than normal cells namely human lymphocytes and also Chinese hamster V79 cells. ACPH also led to regression of tumour volume in mice. In A375 cells, we have shown that it caused DNA damage and blocked cell cycle progression at G(2)-M phase. Treatment with ACPH led to lowering of mitochondrial potential, upregulation of bax, release of cytochrome C and activation of caspase 3. As a new agent showing lower toxicity to normal cells and greater sensitivity towards cancerous cell line, ACPH shows promise as an effective cancer chemotherapeutic agent. ACPH treatment resulted in apoptotic death of cells through mitochondria-mediated caspase-dependent pathway.

Ghosh K.,Kalyani University | Ranjan Sarkar A.,Kalyani University
Organic and Biomolecular Chemistry | Year: 2011

The design and synthesis of pyridinium-based symmetrical diamides 1 and 2 along with their anion binding studies through 'indicator-diplacement assay' are reported. Both the chemosensors effectively respond in in CH 3CN-H 2O (4:1 v/v) at pH = 6.3 for the selective naked-eye detection of citrate. Additionally, chemosensor 2 (c = 6.29 × 10 -3 M) forms a stable gel only with citrate in CH 3CN, which validates its visual sensing. © 2011 The Royal Society of Chemistry.

Hossain S.T.,Kalyani University | Mukherjee S.K.,Kalyani University
Journal of Hazardous Materials | Year: 2013

The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ~3nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC50 value was found to be 4μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells. © 2013 Elsevier B.V..

MicroRNAs target specific mRNA(s) to silence its expression and thereby regulate various cellular processes. We have investigated miRNA gene counts in chromosomes for 20 different species and observed wide variation. Certain chromosomes have extremely high number of miRNA gene compared with others in all the species. For example, high number of miRNA gene in X chromosome and the least or absence of miRNA gene in Y chromosome was observed in all species. To search the criteria governing such variation of miRNA gene counts in chromosomes, we have selected three parameters- length, number of non-coding and coding genes in a chromosome. We have calculated Pearson's correlation coefficient of miRNA gene counts with length, number of non-coding and coding genes in a chromosome for all 20 species. Major number of species showed that number of miRNA gene was not correlated with chromosome length. Eighty five percent of species under study showed strong positive correlation coefficient (r ≥ 0.5) between the numbers of miRNA gene vs. non-coding gene in chromosomes as expected because miRNA is a sub-set of non-coding genes. 55% species under study showed strong positive correlation coefficient (r ≥ 0.5) between numbers of miRNA gene vs. coding gene. We hypothesize biogenesis of miRNA largely depends on coding genes, an evolutionary conserved process. Chromosomes having higher number of miRNA genes will be most likely playing regulatory roles in several cellular processes including different disorders. In humans, cancer and cardiovascular disease associated miRNAs are mostly intergenic and located in Chromosome 19, X, 14, and 1. © 2014 Ghorai and Ghosh.

Bishayee K.,Kalyani University | Khuda-Bukhsh A.R.,Kalyani University
Acta Biochimica et Biophysica Sinica | Year: 2013

Leukotrienes are the bioactive group of fatty acids and major constituents of arachidonic acid metabolism molded by the catalytic activity of 5-lipoxygenase (5-LOX). Evidence is accumulating in support of the direct involvement of 5-LOX in the progression of different types of cancer including prostate, lung, colon, and colorectal cancers. Several independent studies now support the correlation between the 5-LOX expression and cancer cell viability, proliferation, cell migration, invasion through extracellular matrix destruction, metastasis, and activation of anti-apoptotic signaling cascades. The involvement of epidermal growth factor receptor and 5-oxo-ETE receptor (OXER1) is the major talking point in the downstream of the 5-LOX pathway, which relates the cancer cells to the proliferative pathways. Antisense technology approaches and use of different kinds of blocker targeted to 5-LOX, FLAP (5-LOX-activating protein), and OXER1 have shown a greater efficiency in combating different cancer cell types. Lastly, suppression of 5-LOX activity that reduces the cell proliferation activity also induces intrinsic mitochondrial apoptotic pathway in either p53-dependent or independent manner. Pharmacological agents that specifically inhibit the LOX-mediated signaling pathways have been used during last few years to treat inflammatory diseases such as asthma and arthritis. Studies of these well-characterized agents are therefore warranted for their use as possible candidates for chemotherapeutic studies against the killer disease cancer. © 2013 © The Author 2013. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

Irradiated cells generate dynamic responses in non-irradiated cells; this signaling phenomenon is known as the bystander effect (BE). Factors secreted by the irradiated cells communicate some of these signals. Conditioned medium from UVC-irradiated A375 human melanoma cells was used to study the BE. Exposure of cells to conditioned medium induce cell-cycle arrest at the G2/M transition. Although conditioned medium treatment, by itself, did not alter cell viability, treated cells were more resistant to the lethal action of UVC or H2O2. This protective effect of conditioned medium was lost within 8h. Apoptotic or autophagic cell death was not involved in this resistance. Exposure to conditioned medium did not influence the rate of DNA repair, as measured by NAD(+) depletion. The activities of catalase and superoxide dismutase were elevated in cells exposed to conditioned medium, but returned to normal levels by 8h post-treatment. These results indicate a close correlation between BE-stimulated antioxidant activity and cellular sensitivity. Cell-cycle arrest and stimulation of antioxidant activity may account for the resistance to killing that was observed in bystander cells exposed to UVC or H2O2 treatment and are consistent with the role of the BE as a natural defense function triggered by UVC irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

To test if myricanone (C21H24O5), a cyclic diarylheptanoid, has anticancer effects on two different cancer cell lines HeLa and PC3. The present study was conducted with a note on the drug-DNA interaction and apoptotic signalling pathway. Several studies like cytotoxicity, nuclear damage, annexin-V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)-labelled apoptotic assay and cell cycle arrest, immunoblot and reverse transcriptase-polymerase chain reaction (RT-PCR) were used following standard protocols. Circular dichroism (CD) spectroscopy was also done to evaluate whether myricanone effectively interacted with DNA to bring about conformational changes that could strongly inhibit the cancer cell proliferation. Myricanone showed a greater cytotoxic effect on PC3 cells than on HeLa cells. Myricanone promoted G0/G1 arrest in HeLa cells and S phase arrest in PC3 cells. Nuclear condensation and annexin V-FITC/PI studies revealed that myricanone promoted apoptotic cell death. CD spectroscopic data indicated that myricanone had an interaction with calf thymus DNA that changed DNA structural conformation. RT-PCR and immunoblot studies revealed that myricanone activated the apoptotic signalling cascades through down-regulation of transcription factors like nuclear factor-κB (NF-κB) (p65), and signal transducers and activators of transcription 3 (STAT3); cell cycle regulators like cyclin D1, and survivin and other signal proteins like Bcl-2 and up-regulation of Bax, caspase-9 and caspase-3. Myricanone induced apoptosis in both types of cancer cells by triggering caspase activation, and suppression of cell proliferation by down-regulation of NF-κB and STAT3 signalling cascades, which makes it a suitable candidate for possible use in the formulation of therapeutic agent for combating cancer.

One of the oldest known gene clusters that are involved in biological oxidation processes is the sox operon. This operon is present in different microbial species. In the present study an attempt has been made to analyze the probable structural role of SoxT protein from Pseudaminobacter salicylatoxidans. This protein has been predicted to be a permease-like protein. A comparative model of the protein has been made and analyzed. The possible membrane spanning region of the protein has been detected by structural bioinformatics approach. The inducer of the sulfur oxidation process has been predicted. And thereby the plausible mechanism of the transport of the sulfur anion inside the bacterial cell has been elucidated. Since this is the first study regarding the structural aspect of the protein this study may shed light on the theory of the yet unknown molecular mechanism of the sulfur oxidation process by sox operon. © 2013 Elsevier B.V.

Loading Kalyani University collaborators
Loading Kalyani University collaborators