Entity

Time filter

Source Type

Mohali, India

NIPER Mohali is an Indian public Pharmacy research university, and a part of the seven schools, under India's Ministry of Chemicals and Fertilizers. The institute offers Masters and Doctoral degrees in pharmaceutical science. As an Institute of National Importance it plays an important role in the Human Resource Development for the ever growing Indian Pharmaceutical industry, which has been in the forefront of India’s science based industries with wide ranging capabilities in this important field of drug manufacture.The institute offers a 2 year PG degree course; MS in 9 disciplines and MBA . Wikipedia.


Patil M.D.,National Institute of Pharmaceutical Education and Research
Oncogene | Year: 2016

Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities.Oncogene advance online publication, 25 April 2016; doi:10.1038/onc.2016.37. © 2016 Macmillan Publishers Limited


Karpe P.A.,National Institute of Pharmaceutical Education and Research | Tikoo K.,National Institute of Pharmaceutical Education and Research
Diabetes | Year: 2014

We have investigated the role of heat shock (HS) in preventing insulin resistance-induced endothelial dysfunction. To the best of our knowledge, we report here for the first time that insulin resistance inhibits vascular HS protein (HSP) 72 expression. HS treatment (41°C for 20 min) restored the HSP72 expression. High-fat diet (HFD)-fed, insulin-resistant rats show attenuated angiotensin (ANG)-(1-7)- induced vasodilator effect, endothelial nitric oxide synthase (eNOS) phosphorylation, AMP-activated protein kinase phosphorylation, and sirtuin 1 (SIRT1) expression. Interestingly, HS prevented this attenuation. We also provide the first evidence that HFD-fed rats show increased vascular DNA methyltransferase 1 (DNMT1) expression and that HS prevented this increase. Our data show that in HFD-fed rats HS prevented loss in the expression of ANG-(1-7) receptor Mas and ACE2, which were responsible for vascular complications. Further, the inhibition of eNOS (L-NG-nitro-L-arginine methyl ester), Mas (A-779), and SIRT1 (nicotinamide) prevented the favorable effects of HS. This suggests that HS augmented ANG-(1-7) signaling via the Mas/eNOS/SIRT1 pathway. Our study, for the first time, suggests that induction of intracellular HSP72 alters DNMT1 expression, and may function as an epigenetic regulator of SIRT1 and eNOS expression. We propose that induction of HSP72 is a novel approach to prevent insulin resistance-induced vascular complications. © 2014 by the American Diabetes Association..


Jena G.,National Institute of Pharmaceutical Education and Research | Trivedi P.P.,National Institute of Pharmaceutical Education and Research
Inflammatory Bowel Diseases | Year: 2014

Ulcerative colitis (UC), an inflammatory bowel disease, affects many people across the globe, and its prevalence is increasing steadily. Inflammation and oxidative stress play a vital role in the perpetuation of inflammatory process and the subsequent DNA damage associated with the development of UC. UC induces not only local but also systemic damage, which involves the perturbation of multiple molecular pathways. Furthermore, UC leads to an increased risk of colorectal cancer, the third most common malignancy in humans. Most of the drugs used for the treatment of UC are unsatisfactory because they are generally mono-targeted, relatively ineffective and unaffordable for many people. Thus, agents that can target multiple molecular pathways and are less expensive have enormous potential to treat UC. Melatonin has beneficial effects against UC in experimental and clinical studies because of its ability to modulate several molecular pathways of inflammation, oxidative stress, fibrosis, and cellular injury. However, many novel targets are yet to be explored on which melatonin may act to exert its favorable effects in UC. It is time to explore improved intervention strategies with melatonin in UC on the basis of studies investigating different molecular targets using proteomic and genomic approaches. This review identifies various molecular targets for melatonin with the intent of providing novel strategies for combating UC and the associated extraintestinal manifestations of this debilitating disease. Copyright © 2014 Crohn's & Colitis Foundation of America, Inc.


Kaur J.,National Institute of Pharmaceutical Education and Research | Tikoo K.,National Institute of Pharmaceutical Education and Research
Oncogene | Year: 2015

Nanomedicine era is not far from its realization, but a major concern of targeted delivery still stands tall in its way. Herein we demonstrate the mechanism underlying the anticancer activity of an RNA aptamer (Apt) conjugated to gefitinib-loaded poly (lactic co-glycolic acid) nanoparticles (GNPs). Apt was selected through Cell-SELEX (systemic evolution of ligands by exponential enrichment) process against gefitinib-resistant H1975 lung cancer cells. The selected aptamer exhibited high specificity toward H1975 cells, both qualitatively as well as quantitatively. Software analysis using the MATCH tool predicted Ets1, a proto-oncoprotein, to be the target of the selected aptamer. Interestingly, the localization of identified aptamer varied in descending order of Ets1 expression, wherein maximum localization was observed in H1975 cells than in MDA-MB231, DU-145, H23, H460, A431, A549 and MCF-7 cells, and minimum in L132 cells. Furthermore, Apt-GNP bio-conjugate showed augmented anticancer activity specifically in Ets1-overexpressing cells. In addition, partial depletion of Ets1 in H1975 cells and overexpression of Ets1 in L132 cells reversed the targeting efficacy of the aptamer. Notably, a single intratumoral injection of the Apt-GNP bio-conjugate abrogated the growth of tumor in H1975 xenograft nude mice. Altogether, we present a pioneering platform, involving aptamers, which can be clinically used as a diagnostic marker for metastasis as well as an effective delivery system to escort the pharmaceutical cargo specifically to Ets1-overexpressing highly progressive tumors. © 2015 Macmillan Publishers Limited All rights reserved.


Mittal A.K.,National Institute of Pharmaceutical Education and Research | Chisti Y.,Massey University | Banerjee U.C.,National Institute of Pharmaceutical Education and Research
Biotechnology Advances | Year: 2013

Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Synthesis mediated by plant extracts is environmentally benign. The reducing agents involved include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) and gold (Au) nanoparticles have been the particular focus of plant-based syntheses. Extracts of a diverse range of plant species have been successfully used in making nanoparticles. In addition to plant extracts, live plants can be used for the synthesis. Here we review the methods of making nanoparticles using plant extracts. Methods of particle characterization are reviewed and potential applications of the particles in medicine are discussed. © 2013 Elsevier Inc.

Discover hidden collaborations