Entity

Time filter

Source Type

Cleveland, OH, United States

Porat Y.,BioGenCell Ltd | Abraham E.,Lonza Walkersville Inc. | Karnieli O.,Pluristem | Nahum S.,Pluristem | And 2 more authors.
Cytotherapy | Year: 2015

A successful potency assay for a cell therapy product (CTP) used in the treatment of ischemic conditions should quantitatively measure relevant biological properties that predict therapeutic activity. This is especially challenging because of numerous degrees of complexity stemming from factors that include a multifactorial complex mechanism of action, cell source, inherent cell characteristics, culture method, administration mode and the in vivo conditions to which the cells are exposed. The expected biological function of a CTP encompasses complex interactions that range from a biochemical, metabolic or immunological activity to structural replacement of damaged tissue or organ. Therefore, the requirements for full characterization of the active substance with respect to biological function could be taxing. Moreover, the specific mechanism of action is often difficult to pinpoint to a specific molecular entity; rather, it is more dependent on the functionality of the cellular components acting in a in a multifactorial fashion. In the case of ischemic conditions, the cell therapy mechanism of action can vary from angiogenesis, vasculogenesis and arteriogenesis that may activate different pathways and clinical outcomes. The CTP cellular attributes with relation to the suggested mechanism of action can be used for the development of quantitative and reproducible analytical potency assays. CTPs selected and released on the basis of such potency assays should have the highest probability of providing meaningful clinical benefit for patients. This White Paper will discuss and give examples for key elements in the development of a potency assay for treatment of ischemic disorders treated by the use of CTPs. © 2015 International Society for Cellular Therapy. Source


Patent
Juventas Therapeutics Inc. and Cleveland Clinic | Date: 2012-10-12

The subject matter provided herein relates to method for inhibiting or mitigating scar formation in a wound of the skin, by increasing the concentration of SDF-1 in, or proximate to, the wound. As described herein SDF-1 protein or an SDF-1 expression vector can be administered to a wound or the area proximate a wound by providing a therapeutically effective amount of SDF-1 protein or an SDF-1 expression vector.


Patent
Juventas Therapeutics Inc. and Cleveland Clinic | Date: 2014-02-07

The subject matter provided herein relates to method for inhibiting or mitigating scar formation in a wound of the skin, by increasing the concentration of SDF-1 in, or proximate to, the wound. As described herein SDF-1 protein or an SDF-1 expression vector can be administered to a wound or the area proximate a wound by providing a therapeutically effective amount of SDF-1 protein or an SDF-1 expression vector.


Patent
Juventas Therapeutics Inc. and Cleveland Clinic | Date: 2013-12-09

A method of treating a cardiomyopathy in a subject includes administering directly to or expressing locally in a weakened, ischemic, and/or peri-infarct region of myocardial tissue of the subject an amount of SDF-1 effective to cause functional improvement in at least one of the following parameters: left ventricular volume, left ventricular area, left ventricular dimension, cardiac function, 6-minute walk test, or New York Heart Association (NYHA) functional classification.


Patent
Cleveland Clinic and Juventas Therapeutics Inc. | Date: 2014-03-15

Described herein are methods of treating a subject with a cardiomyopathy by administering to the subjects heart, via percutaneous retrograde coronary sinus perfusion, a pharmaceutical composition that comprises a DNA plasmid encoding SDF-1 and a pharmaceutically acceptable carrier or diluent.

Discover hidden collaborations