Entity

Time filter

Source Type

Takatsuki, Japan

Hiroki O.,JT Biohistory Research Hall
Sub-cellular biochemistry | Year: 2012

Adherens junctions are the most common junction type found in animal epithelia. Their core components are classical cadherins and catenins, which form membrane-spanning complexes that mediate intercellular binding on the extracellular side and associate with the actin cytoskeleton on the intracellular side. Junctional cadherin-catenin complexes are key elements involved in driving animal morphogenesis. Despite their ubiquity and importance, comparative studies of classical cadherins, catenins and their related molecules suggest that the cadherin/catenin-based adherens junctions have undergone structural and compositional transitions during the diversification of animal lineages. This chapter describes the molecular diversities related to the cadherin-catenin complex, based on accumulated molecular and genomic information. Understanding when and how the junctional cadherin-catenin complex originated, and its subsequent diversification in animals, promotes a comprehensive understanding of the mechanisms of animal morphological diversification. Source


Oda H.,JT Biohistory Research Hall | Oda H.,Osaka University | Takeichi M.,RIKEN
Journal of Cell Biology | Year: 2011

Adhesion between cells is essential to the evolution of multicellularity. Indeed, morphogenesis in animals requires firm but flexible intercellular adhesions that are mediated by subcellular structures like the adherens junction (AJ). A key component of AJs is classical cadherins, a group of transmembrane proteins that maintain dynamic cell-cell associations in many animal species. An evolutionary reconstruction of cadherin structure and function provides a comprehensive framework with which to appreciate the diversity of morphogenetic mechanisms in animals © 2011 Oda and Takeichi. Source


Nishikawa H.,University of Tokyo | Iijima T.,University of Tokyo | Kajitani R.,Tokyo Institute of Technology | Yamaguchi J.,University of Tokyo | And 16 more authors.
Nature Genetics | Year: 2015

In Batesian mimicry, animals avoid predation by resembling distasteful models. In the swallowtail butterfly Papilio polytes, only mimetic-form females resemble the unpalatable butterfly Pachliopta aristolochiae. A recent report showed that a single gene, doublesex (dsx), controls this mimicry; however, the detailed molecular mechanisms remain unclear. Here we determined two whole-genome sequences of P. polytes and a related species, Papilio xuthus, identifying a single ∼130-kb autosomal inversion, including dsx, between mimetic (H-type) and non-mimetic (h-type) chromosomes in P. polytes. This inversion is associated with the mimicry-related locus H, as identified by linkage mapping. Knockdown experiments demonstrated that female-specific dsx isoforms expressed from the inverted H allele (dsx(H)) induce mimetic coloration patterns and simultaneously repress non-mimetic patterns. In contrast, dsx(h) does not alter mimetic patterns. We propose that dsx(H) switches the coloration of predetermined wing patterns and that female-limited polymorphism is tightly maintained by chromosomal inversion. © 2015 Nature America, Inc. All rights reserved. Source


Oda H.,JT Biohistory Research Hall
Sub-Cellular Biochemistry | Year: 2012

Adherens junctions are the most common junction type found in animal epithelia. Their core components are classical cadherins and catenins, which form membrane-spanning complexes that mediate intercellular binding on the extracellular side and associate with the actin cytoskeleton on the intracellular side. Junctional cadherin–catenin complexes are key elements involved in driving animal morphogenesis. Despite their ubiquity and importance, comparative studies of classical cadherins, catenins and their related molecules suggest that the cadherin/catenin-based adherens junctions have undergone structural and compositional transitions during the diversification of animal lineages. This chapter describes the molecular diversities related to the cadherin–catenin complex, based on accumulated molecular and genomic information. Understanding when and how the junctional cadherin–catenin complex originated, and its subsequent diversification in animals, promotes a comprehensive understanding of the mechanisms of animal morphological diversification. © Springer Science+Business Media Dordrecht 2012. Source


Ai H.,Fukuoka University | Yoshida A.,JT Biohistory Research Hall | Yokohari F.,Fukuoka University
Journal of Insect Physiology | Year: 2010

Bristles along the wing margins (wm-bristles) of the silkworm moth, Bombyx mori, were studied morphologically and electrophysiologically. The male moth has ca. 50 wm-bristles on each forewing and hindwing. Scanning electron microscopy revealed that these wm-bristles are typical mechanosensilla. Leuco-methylene blue staining demonstrated that each wm-bristle has a single receptor neuron, which is also characteristic of the mechanosensillum. The receptor neuron responded to vibrating air currents but did not respond to a constant air current. The wm-bristles showed clear directional sensitivity to vibrating air currents. The wm-bristles were classified into two types, type I and type II, by their response patterns to sinusoidal movements of the bristle. The neuron in type I discharged bursting spikes immediately following stimulation onset and also discharged a single spike for each sinusoidal cycle for frequencies less than ca. 60 Hz. The neuron in type II only responded to vibrations over 40 Hz and, specifically at 75 Hz, discharged a single spike for each sinusoidal cycle throughout the stimulation period. These results suggest that the two types of wm-bristles are highly tuned in different ways to detect vibrations due to the wing beat. The roles of the wm-bristles in the wing beat are discussed. © 2009 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations