Time filter

Source Type

Saint Petersburg, Russia

Zhgoon S.,National Research University Moscow Power Engineering Institute | Shvetsov A.,National Research University Moscow Power Engineering Institute | Ancev I.,Radar mms JSC | Bogoslovsky S.,Radar mms JSC | And 3 more authors.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control | Year: 2015

For biomedical applications, narrow temperature range and high sensor accuracy requirements define the need for high temperature sensitivity. Wireless SAW sensors connected to antennas need a reference element to account for changes in electromagnetic coupling between the transmitter and receiver antennas. A pair of sensors with different temperature sensitivities may serve as a self-referenced sensor assembly. This justifies the need for materials with useful SAW resonator properties and with the largest difference between temperature coefficients of frequency (TCF) for a resonator pair on a single substrate. We have identified several cuts of quartz having useful properties with a TCF difference up to 140 ppm/°C for a pair of resonators on a single substrate. As a rule, placing such resonators on a single substrate requires their rotation by up to 90°relative to each other. The limited range of cuts presents a unique opportunity to place both resonators along the X+90°direction with one resonator using Bleustein-Gulyaev-Shimizu (BGS) waves (with electrodes placed along the x-axis) and the other one (with electrodes inclined by about ±10°to the x-axis) using quasi-Rayleigh waves. These cuts are close to the 70°Y cut where a high TCF difference is reached together with acceptable characteristics of the resonators. Resonators were designed for all useful cuts (including the 70°Y cut) and tested. The use of different periods in reflectors and interdigital transducer (IDT) together with individual choice of gaps between reflectors and IDT meant achieving low spurious content in resonator responses. The quality factors reached values up to 3500 at central frequencies around 915 MHz for both BGS and quasi-Rayleigh types of waves. The measured difference of the TCF is about 138 ppm/°C on 70°Y cut that is close to the calculated value. © 1986-2012 IEEE.

Discover hidden collaborations