Ljubljana, Slovenia
Ljubljana, Slovenia

The Jožef Stefan Institute , is the largest research institute in Slovenia. The main research areas are physics, chemistry, molecular biology, biotechnology, information technologies, reactor physics, energy and environment. At the beginning of the 2013 the Institute had 962 employees, 404 among them were Ph.D scientists.The mission of the Jožef Stefan Institute is the accumulation - and dissemination - of knowledge at the frontiers of natural science and technology to the benefit of society at large through the pursuit of education, learning, research, and development of high technology at the highest international levels of excellence.The Institute was founded by Yugoslav State Security in 1949 for atomic weapons research. Initially, the Vinča Nuclear Institute in Belgrade was established in 1948, followed by Rudjer Boskovic in Zagreb in 1949 and the Jožef Stefan Institute as an Institute for Physics within the Slovenian Academy of science and Arts. It is named after the distinguished 19th century physicist Jožef Stefan, most famous for his work on the Stefan-Boltzmann law of black-body radiation. IJS is today involved in a wide variety of fields of both scientific and economic interest. After close to 60 years of scientific achievement, the Institute has become part of the image of Slovenia.The Institute has facilities in two locations. The main facilities and the headquarters are on Jamova 39 in Ljubljana, the other location is the Institute's Reactor Center Podgorica located in Dol near Ljubljana.Over the last 60 years it has created a number of important institutions, such as the University of Nova Gorica, the Jožef Stefan International Postgraduate School and the Ljubljana Technology park. Wikipedia.


Time filter

Source Type

Turk D.,Jozef Stefan Institute
Acta Crystallographica Section D: Biological Crystallography | Year: 2013

MAIN is software that has been designed to interactively perform the complex tasks of macromolecular crystal structure determination and validation. Using MAIN, it is possible to perform density modification, manual and semi-automated or automated model building and rebuilding, real- and reciprocal-space structure optimization and refinement, map calculations and various types of molecular structure validation. The prompt availability of various analytical tools and the immediate visualization of molecular and map objects allow a user to efficiently progress towards the completed refined structure. The extraordinary depth perception of molecular objects in three dimensions that is provided by MAIN is achieved by the clarity and contrast of colours and the smooth rotation of the displayed objects. MAIN allows simultaneous work on several molecular models and various crystal forms. The strength of MAIN lies in its manipulation of averaged density maps and molecular models when noncrystallographic symmetry (NCS) is present. Using MAIN, it is possible to optimize NCS parameters and envelopes and to refine the structure in single or multiple crystal forms. © 2013 International Union of Crystallography.


Grant
Agency: Cordis | Branch: H2020 | Program: ERA-NET-Cofund | Phase: SC5-15-2015 | Award Amount: 52.36M | Year: 2016

In the last decade a significant number of projects and programmes in different domains of environmental monitoring and Earth observation have generated a substantial amount of data and knowledge on different aspects related to environmental quality and sustainability. Big data generated by in-situ or satellite platforms are being collected and archived with a plethora of systems and instruments making difficult the sharing of data and knowledge to stakeholders and policy makers for supporting key economic and societal sectors. The overarching goal of ERA-PLANET is to strengthen the European Research Area in the domain of Earth Observation in coherence with the European participation to Group on Earth Observation (GEO) and the Copernicus. The expected impact is to strengthen the European leadership within the forthcoming GEO 2015-2025 Work Plan. ERA-PLANET will reinforce the interface with user communities, whose needs the Global Earth Observation System of Systems (GEOSS) intends to address. It will provide more accurate, comprehensive and authoritative information to policy and decision-makers in key societal benefit areas, such as Smart cities and Resilient societies; Resource efficiency and Environmental management; Global changes and Environmental treaties; Polar areas and Natural resources. ERA-PLANET will provide advanced decision support tools and technologies aimed to better monitor our global environment and share the information and knowledge in different domain of Earth Observation.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.88M | Year: 2017

In an expanding world with limited resources and increasing uncertainty, optimisation and uncertainty quantification become a necessity. Optimisation can turn a problem into a solution, thus the main focus of this ETN is to explore and develop new approaches to treat uncertainty in complex engineering systems and use novel optimisation techniques to efficiently deal with large scale problems with many objectives and uncertain quantities. It is generally recognised, in fact, that neglecting the impact of uncertainty on the design of any system or process can lead to unreliable design solutions. Common approaches that make use of safety margins to account for uncertainty in design and manufacturing are not adequate to fully capture the growing complexity of engineering systems and provide reliable and optimal solutions. Aerospace engineering is here taken as a paradigmatic area of research and development that is concerned with complex systems, or system of systems, in which optimality and reliability are of paramount importance. UTOPIAE will train the future generation of engineers and mathematicians who will be able to tackle the complexity of aerospace systems and provide greener, more affordable and safer transportation solutions.


Grant
Agency: Cordis | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding can provide profound insights into our humanity, leading to fundamentally new computing technologies, and transforming the diagnosis and treatment of brain disorders. Modern ICT brings this prospect within reach. The HBP Flagship Initiative (HBP) thus proposes a unique strategy that uses ICT to integrate neuroscience data from around the world, to develop a unified multi-level understanding of the brain and diseases, and ultimately to emulate its computational capabilities. The goal is to catalyze a global collaborative effort. During the HBPs first Specific Grant Agreement (SGA1), the HBP Core Project will outline the basis for building and operating a tightly integrated Research Infrastructure, providing HBP researchers and the scientific Community with unique resources and capabilities. Partnering Projects will enable independent research groups to expand the capabilities of the HBP Platforms, in order to use them to address otherwise intractable problems in neuroscience, computing and medicine in the future. In addition, collaborations with other national, European and international initiatives will create synergies, maximizing returns on research investment. SGA1 covers the detailed steps that will be taken to move the HBP closer to achieving its ambitious Flagship Objectives.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-13-2016 | Award Amount: 11.65M | Year: 2017

The Fed4FIRE\ project has the objective to run and further improve Fed4FIREs best-in-town federation of experimentation facilities for the Future Internet Research and Experimentation initiative. Federating a heterogeneous set of facilities covering technologies ranging from wireless, wired, cloud services and open flow, and making them accessible through common frameworks and tools suddenly opens new possibilities, supporting a broad range of experimenter communities covering a wide variety of Internet infrastructures, services and applications. Fed4FIRE\ will continuously upgrade and improve the facilities and include technical innovations, focused towards increased user satisfaction (user-friendly tools, privacy-oriented data management, testbed SLA and reputation, experiment reproducibility, service-level experiment orchestration, federation ontologies, etc.). It will open this federation to the whole FIRE community and beyond, for experimentation by industry and research organisations, through the organization of Open Calls and Open Access mechanisms The project will also establish a flexible, demand-driven framework which allows test facilities to join during the course of its lifetime by defining a set of entry requirements for new facilities to join and to comply with the federation. FIRE Experimental Facilities generate an ever increasing amount of research data that provides the foundation for new knowledge and insight into the behaviour of FI systems. Fed4FIRE\ will participate in the Pilot on Open Research Data in Horizon 2020 to offer open access to its scientific results, to the relevant scientific data and to data generated throughout the projects lifetime. Fed4FIRE\ will finally build on the existing community of experimenters, testbeds and tool developers and bring them together regularly (two times a year) in engineering conferences to have maximal interaction between the different stakeholders involved.


Grant
Agency: Cordis | Branch: H2020 | Program: COFUND-EJP | Phase: SC1-PM-05-2016 | Award Amount: 74.06M | Year: 2017

The overarching goal of the European Human Biomonitoring Initiative (HBM4EU) is to generate knowledge to inform the safe management of chemicals and so protect human health. We will use human biomonitoring to understand human exposure to chemicals and resulting health impacts and will communicate with policy makers to ensure that our results are exploited in the design of new chemicals policies and the evaluation of existing measures. Key objectives include: Harmonizing procedures for human biomonitoring across 26 countries, to provide policy makers with comparable data on human internal exposure to chemicals and mixtures of chemicals at EU level; Linking data on internal exposure to chemicals to aggregate external exposure and identifying exposure pathways and upstream sources. Information on exposure pathways is critical to the design of targeted policy measures to reduce exposure; Generating scientific evidence on the causal links between human exposure to chemicals and negative health outcomes; and Adapting chemical risk assessment methodologies to use human biomonitoring data and account for the contribution of multiple external exposure pathways to the total chemical body burden. We will achieve these objectives by harmonizing human biomonitoring initiatives in 26 countries, drawing on existing expertise and building new capacities. By establishing National Hubs in each country to coordinate activities, we will create a robust Human Biomonitoring Platform at European level. This initiative contributes directly to the improvement of health and well-being for all age groups, by investigating how exposure to chemicals affects the health of different groups, such as children, pregnant women, foetuses and workers. We will also investigate how factor such as behavior, lifestyle and socio-economic status influence internal exposure to chemicals across the EU population. This knowledge will support policy action to reduce chemical exposure and protect health.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: ICT-14-2016-2017 | Award Amount: 3.60M | Year: 2017

Corporate information, including basic company firmographics (e.g., name(s), incorporation data, registered addresses, ownership and related entities), financials (e.g., balance sheets, ratings) as well as contextual data (e.g., cadastral data on corporate properties, geo data, data about directors and shareholders, public tenders data, press mentions) are the foundation that many data value chains are built on. Furthermore, this type of information contributes to the transparency and accountability of enterprises, is instrumental input to the process of marketing and sales, and plays a key role in many business interactions. Existing initiatives to increase the interoperability and access of corporate data are mostly fragmented (across borders), limited in scope and size, and silo-ed within specific business communities with limited accessibility from outside their originating sectors and countries. As a result, collecting and aggregating data about a business entity from several public sources (be it private/public, official or non-official ones), and especially across country borders and languages is a tedious, time consuming, error prone, and very expensive operation which renders many potential business models non-feasible. euBusinessGraph represents a key initiative to simplify and disrupt the cross-border and cross-lingual collection, reconciliation, aggregation, and provisioning and analytics of company-related data from authoritative and non-authoritative public or private sector sources, with the aim of enabling cross-sectorial innovation. By a combination of large companies, SMEs, public organizations, and technology transfer providers euBusinessGraph sets the foundations of a European cross-border and cross-lingual business graph, aggregating, linking, and provisioning (open and non-open) high-quality company-related data, demonstrating innovation across sectors where company-related data value chains are relevant.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-06-2016 | Award Amount: 4.26M | Year: 2017

PrEstoCloud project will make substantial research contributions in the cloud computing and real-time data intensive applications domains, in order to provide a dynamic, distributed, self-adaptive and proactively configurable architecture for processing Big Data streams. In particular, PrEstoCloud aims to combine real-time Big Data, mobile processing and cloud computing research in a unique way that entails proactiveness of cloud resources use and extension of the fog computing paradigm to the extreme edge of the network. The envisioned PrEstoCloud solution is driven by the microservices paradigm and has been structured across five different conceptual layers: i) Meta-management; ii) Control; iii) Cloud infrastructure; iv) Cloud/Edge communication and v) Devices, layers. This innovative solution will address the challenge of cloud-based self-adaptive real-time Big Data processing, including mobile stream processing and will be demonstrated and assessed in several challenging, complementary and commercially-promising pilots. There will be three PrEstoCloud pilots from the logistics, mobile journalism and security surveillance, application domains. The objective is to validate the PrEstoCloud solution, prove that it is domain agnostic and demonstrate its added-value for attracting early adopters, thus initialising the exploitation process early on.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-25-2016-2017 | Award Amount: 3.95M | Year: 2017

Recent technological progress in robot physical interaction permitted robots to actively and safely share with human a common workspace. Thanks to these technologies, Europe nowadays leads the robotic market in the niche of safety certified robots by endowing them with the ability to react to unintentional contacts. ANDY leverages these technologies and strengthen the European leadership by endowing robots with the ability to control physical collaboration through intentional interaction. These advances necessitate progresses along three main directions: measuring, modeling and helping humans engaged in intentional collaborative physical tasks. First, ANDY will innovate the way of measuring human whole-body motions developing the ANDYSUIT, a wearable force and motion tracking technology. Second, ANDY will develop the ANDYMODEL, a technology to learn cognitive models of human behavior in collaborative tasks. Third, ANDY will propose the ANDYCONTROL, an innovative technology for helping humans through predictive physical collaboration. ANDY will accelerate take-up and deployment by validating its progresses in realistic scenarios. In the first validation scenario the robot is identified with an industrial collaborative robot (i.e. robot=cobot) which adapts its ergonomy to individual workers. In the second validation scenario the robot is identified with an assistive exoskeleton (i.e. robot=exoskeleton) optimizing human comfort and reducing physical stress. In the third validation scenario the robot is identified with a humanoid (i.e. robot=humanoid) offering assistance to a human while maintaining the balance of both.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: NMBP-03-2016 | Award Amount: 4.95M | Year: 2017

Permanent magnets are crucial in modern technology as they allow storing, delivering and converting energy. They are able to transform electrical energy into mechanical and vice versa, which means that improving their performance entails transforming energy in a more efficient and sustainable way. The best magnets are based on rare-earths (RE), however, their status as a Critical Raw Material (CRM) has brought forward the realization that it is of great strategic, geographic, environmental and socio-economic importance to consider alternative magnets that present a reduced amount (or absence) of RE. One of the most sought approaches towards this goal consists on constructing composite magnetic materials magnetically coupled at the interface. In the framework of the success of a previous European Project (FP7-SMALL-NANOPYME-310516), focused on improving ferrite-based magnets, we developed a low-cost novel approach (Patent P201600092) that exploits the magnetostatic interactions within these composites and that yielded extremely promising results in the form of an experimental proof-of-concept. The goal of this project is to implement up-scalable and cost-efficient methods for fabrication of ferrite-based dense anisotropic magnets with a 40% enhanced magnetic performance (energy products above 55 kJ/m3) with respect to commercial ferrites. We aim at producing improved magnets that retain the advantages of ferrites availability, sustainability, cost, recyclability, eco-friendliness- and which have the potential to substitute currently used RE magnets (CRM) in the electric power system. Our targeted application is an electric energy storage device: we will substitute RE magnets by AMPHIBIAN ones in a demonstrator of a flywheel and evaluate its performance against cost, eco-friendliness and resource efficiency criteria.

Loading Jozef Stefan Institute collaborators
Loading Jozef Stefan Institute collaborators