Josephine Bay Paul Center for Comparative Evolution and Molecular Biology

East Falmouth, MA, United States

Josephine Bay Paul Center for Comparative Evolution and Molecular Biology

East Falmouth, MA, United States
SEARCH FILTERS
Time filter
Source Type

Lasek-Nesselquist E.,Josephine Bay Paul Center for Comparative Evolution and Molecular Biology | Lasek-Nesselquist E.,Brown University | Welch D.M.,Josephine Bay Paul Center for Comparative Evolution and Molecular Biology | Sogin M.L.,Josephine Bay Paul Center for Comparative Evolution and Molecular Biology
International Journal for Parasitology | Year: 2010

Giardia duodenalis is an intestinal parasite of many vertebrates. The presence of G. duodenalis in the marine environment due to anthropogenic and wildlife activity is well documented, including the contributions from untreated sewage and storm water, agricultural run-off and droppings from terrestrial animals. Recently, studies have detected this protistan parasite in the faeces of marine vertebrates such as whales, dolphins, seals and shore birds. To explore the population biology of G. duodenalis in marine life, we determined the prevalence of G. duodenalis in two species of seal (Halichoerus grypus, Phoca vitulina vitulina and Phoca vitulina richardsi) from the east and west coasts of the USA, sequenced two loci from G. duodenalis-positive samples to assess molecular diversity and examined G. duodenalis distribution amongst these seals and other marine vertebrates along the east coast. We found a significant difference in the presence of G. duodenalis between east and west coast seal species. Only the zoonotic lineages of G. duodenalis, Assemblages A and B and a novel lineage, which we designated as Assemblage H, were identified in marine vertebrates. Assemblages A and B are broadly distributed geographically and show a lack of host specificity. Only grey seal (Halichoerus grypus) samples and one gull sample (Larus argentatus) from a northern location of Cape Cod, Massachusetts, USA, showed the presence of Assemblage H haplotypes; only one other study of harbour seals from the Puget Sound region of Washington, USA previously recorded the presence of an Assemblage H haplotype. Assemblage H sequences form a monophyletic clade that appears as divergent from the other seven Assemblages of G. duodenalis as these assemblages are from each other. The discovery of a previously uncharacterised lineage of G. duodenalis suggests that this parasite has more genetic diversity and perhaps a larger host range than previously believed. © 2010 Australian Society for Parasitology Inc.


Takumi K.,National Institute of Public Health and Environment RIVM | Swart A.,National Institute of Public Health and Environment RIVM | Mank T.,Laboratory of Public Health | Lasek-Nesselquist E.,Josephine Bay Paul Center for Comparative Evolution and Molecular Biology | And 3 more authors.
Parasites and Vectors | Year: 2012

Background: Giardia duodenalis is a common protozoan parasite of humans and animals. Genetic characterization of single loci indicates the existence of eight groups called assemblages, which differ in their host distribution. Molecular analyses challenged the idea that G. duodenalis is a strictly clonal diplomonad by providing evidence of recombination within and between assemblages. Particularly, inter-assemblage recombination events would complicate the interpretation of multi-locus genotyping data from field isolates: where is a host infected with multiple Giardia genotypes or with a single, recombined Giardia genotype. Methods: Population genetic analyses on the single and multiple-locus level on an extensive dataset of G. duodenalis isolates from humans and animals were performed. Results: Our analyses indicate that recombination between isolates from different assemblages are apparently very rare or absent in the natural population of Giardia duodenalis. At the multi-locus level, our statistical analyses are more congruent with clonal reproduction and can equally well be explained with the presence of multiple G. duodenalis genotypes within one field isolate. Conclusions: We conclude that recombination between G. duodenalis assemblages is either very rare or absent. Recombination between genotypes from the same assemblage and genetic exchange between the nuclei of a single cyst needs further investigation. © 2012 Takumi et al.


PubMed | Josephine Bay Paul Center for Comparative Evolution and Molecular Biology
Type: Journal Article | Journal: International journal for parasitology | Year: 2010

Giardia duodenalis is an intestinal parasite of many vertebrates. The presence of G. duodenalis in the marine environment due to anthropogenic and wildlife activity is well documented, including the contributions from untreated sewage and storm water, agricultural run-off and droppings from terrestrial animals. Recently, studies have detected this protistan parasite in the faeces of marine vertebrates such as whales, dolphins, seals and shore birds. To explore the population biology of G. duodenalis in marine life, we determined the prevalence of G. duodenalis in two species of seal (Halichoerus grypus, Phoca vitulina vitulina and Phoca vitulina richardsi) from the east and west coasts of the USA, sequenced two loci from G. duodenalis-positive samples to assess molecular diversity and examined G. duodenalis distribution amongst these seals and other marine vertebrates along the east coast. We found a significant difference in the presence of G. duodenalis between east and west coast seal species. Only the zoonotic lineages of G. duodenalis, Assemblages A and B and a novel lineage, which we designated as Assemblage H, were identified in marine vertebrates. Assemblages A and B are broadly distributed geographically and show a lack of host specificity. Only grey seal (Halichoerus grypus) samples and one gull sample (Larus argentatus) from a northern location of Cape Cod, Massachusetts, USA, showed the presence of Assemblage H haplotypes; only one other study of harbour seals from the Puget Sound region of Washington, USA previously recorded the presence of an Assemblage H haplotype. Assemblage H sequences form a monophyletic clade that appears as divergent from the other seven Assemblages of G. duodenalis as these assemblages are from each other. The discovery of a previously uncharacterised lineage of G. duodenalis suggests that this parasite has more genetic diversity and perhaps a larger host range than previously believed.

Loading Josephine Bay Paul Center for Comparative Evolution and Molecular Biology collaborators
Loading Josephine Bay Paul Center for Comparative Evolution and Molecular Biology collaborators