Billingham, United Kingdom
Billingham, United Kingdom

Johnson Matthey is a British multinational speciality chemicals and sustainable technologies company headquartered in the United Kingdom. It is listed on the London Stock Exchange and has been a constituent of the FTSE 100 Index since 2002. Today, the company has market capitalisation of over £6 billion with 12,000 employees operating in more than 30 countries. Wikipedia.


Time filter

Source Type

Different polymorphs of bromfenac sodium may be prepared and interconverted using crystallization/recrystallization, drying and/or hydration techniques.


Patent
Johnson Matthey and Ecole Polytechnique de Montréal | Date: 2017-04-05

There is provided a process for producing LiMXO4 , comprising the steps of reacting a source of lithium, a source of M, and a source of X together, in a melted state at a reaction temperature between 900 to 1450oC, in the presence of an excess of (A) a solid-solid reducing couple having an oxygen partial pressure at equilibrium (pO2) comprised between 10-8 and 10-15 atm at said reaction temperature according to an Ellingham-Richardson diagram for oxides, or (B) one component of the solid-solid reducing couple together with a gas-gas reducing couple having an oxygen partial pressure at equilibrium (pO2) comprised between 10 -8 and 10-15 atm at said reaction temperature according to an Ellingham-Richardson diagram for oxides, and under thermic equilibrium and thermodynamic equilibrium. There is also provided a LiMXO4 melt-solidified product free from off-composition impurities.


Patent
Johnson Matthey | Date: 2017-02-01

To be able to produce an SCR catalyst (2), in particular one having a zeolite fraction (Z) as catalytically active fraction, in a reliable process and at the same time achieve good catalytic activity of the catalyst (2), an inorganic binder fraction (B) which is catalytically inactive in the starting state and has been treated to develop catalytic activity is mixed into a catalyst composition (4). The inorganic binder component for the binder fraction (B) is, in the starting state, preferably porous particles (10), in particular diatomaceous earth, which display mesoporosity. To effect catalytic activation, the individual particles (10) are either coated with a catalytically active layer (12) or transformed into a catalytically active zeolite (14) with maintenance of the mesoporosity.


A method of reducing nitrogen oxides in exhaust gas of an internal combustion engine by selective catalytic reduction (SCR) comprises contacting the exhaust gas also containing ammonia and oxygen with a catalytic converter comprising a catalyst (2) comprising at least one crystalline small-pore molecular sieve catalytically active component (ZM,I)having a maximum ring opening of eight tetrahedral basic building blocks, which crystalline small-pore molecular sieve catalytically active component (ZM,I) comprising mesopores.


Patent
Johnson Matthey | Date: 2017-02-01

Provided is a method for reducing N2O emissions in an exhaust gas comprising contacting an exhaust gas containing NH3 and an inlet NO concentration with an SCR catalyst composition containing small pore zeolite having a silica-to-alumina ratio (SAR) of about 3 to about 15 and having about 1 - 5 wt. % of an exchanged transition metal.


Patent
Johnson Matthey | Date: 2017-03-22

Provided is a catalytic article comprising (a) a flow through honeycomb substrate having channel walls; (b) a first NH3-SCR catalyst composition coated on and/or within the channel walls in a first zone; and (c) a second NH3-SCR catalyst composition coated on and/or within the channel walls in a second zone, provided that the first zone is upstream of the second zone and the first and second zones are adjacent or at least partially overlap; and wherein the first NH3-SCR catalyst comprises a first copper loaded molecular sieve having a copper to aluminum atomic ratio of about 0.1 to 0.375 and the second NH3-SCR catalyst comprises a second copper loaded molecular sieve having a copper-to-aluminum atomic ratio of about 0.3 to about 0.6.


Articles comprising a catalyst film comprising VOx, MoO3 or WO3, and TiO2 deposited on a substrate are disclosed. The articles are useful for selective catalytic reduction (SCR) of NOx in exhaust gases. Methods for producing such articles deposit a catalyst film on the substrate to form a coated substrate, which is then calcined. When used in an SCR process, the coated articles have enhanced activity for NOx conversion, reduced activity for SOx conversion, or both. Light-weight, coated articles having high catalyst loads can be fabricated at the same or reduced dimensions when compared with laminated articles, and increased kNOx/kSOx ratios are available even from coated articles having relatively thin catalyst films. The articles should have particular value for power plant operations, where coal and high-sulfur fuels are commonly used and controlling sulfur trioxide generation is critical.


The catalytic converter apparatus (20) has at least one element box (2) which extends in a longitudinal direction (10) and which has a first pair of first side walls (4) which lie opposite one another, and a second pair of second side walls (6) which lie opposite one another, and two open end sides (8) which lie opposite one another in the longitudinal direction (10). A plurality of catalytic converter plates (16) are arranged in the element box (2), which catalytic converter plates (16) are oriented parallel to the first side walls, merely one part of the side walls (4, 6) having a rail (22) which extends transversely with respect to the longitudinal direction (10) on at least one of the end sides (8), on which rail (22) the catalytic converter plates (16) are supported. As a result, the flow properties of the element box (2) are improved and the risk of dust deposits is avoided.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.83M | Year: 2017

ES-Cat will use directed evolution as a tool to reproduce Natures remarkable ability to generate molecular machines - in particular enzymes that perform at levels near perfection. Instead of seeing rational and combinatorial approaches as alternatives, we combine them in this network to achieve a smarter and more efficient exploration of protein sequence space. By harnessing the forces of Darwinian evolution and design in the laboratory we want to (i) screen large and diverse libraries for proteins with improved and useful functions, (ii) optimize existing proteins for applications in medicine or biotechnology and (iii) provide a better understanding of how existing enzymes evolved and how enzyme mechanisms can be manipulated. This Network brings together leading academic and industrial groups with diverse and complementary skills. The range of methodologies represented in ES-Cat allows an integrated approach combining in silico structural and sequence analysis with experimental high-throughput screening selection methods (phage-, ribozyme and SNAP display, robotic liquid handling, lab-on-a-chip/microfluidics) with subsequent systematic kinetic and biophysical analysis. This integration of methods and disciplines will improve the likelihood of success of directed evolution campaigns, shorten biocatalyst development times, and make protein engineering applicable to a wider range of industrial targets. It will also train the next generation of creative researchers ready to fill roles in tailoring enzymes and other proteins for industrial application in synthetic biology efforts to move towards a bio-based economy, rivaling advances that are being made in the US and allowing the EU economy to harvest its evident socio-economic benefits.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: NMBP-01-2016 | Award Amount: 7.59M | Year: 2017

Objectives The H-CCAT project designs, upscales and shapes hybrid catalysts for the C-H functionalization of aromatic compounds. These solid catalysts will possess better recoverability, higher turnover numbers and better selectivity than current homogeneous catalysts for these reactions. The solid catalysts are applied at demonstration scale in the step-economical production of arylated or alkenylated aromatics, yielding motifs of active pharmaceutical ingredients. Methodology We will design heterogeneous hybrid catalysts featuring deactivation-resistant active sites, based on N-heterocyclic carbenes (NHCs) or diimine ligands and active metal ions. Via efficient, one-step protocols based on self-assembly, these sites will be embedded in robust porous hybrid materials like hybrid silica or metal-organic frameworks. Deactivation or metal aggregation will be prevented by site isolation or by efficient metal reoxidation (for the oxidative alkenylations). Metal leaching is precluded by using strong bonds between metals and embedded ligands like NHCs. Flow protocols will be designed to maximize the turnover numbers. Catalyst synthesis will be scaled up to kg scale, using efficient one-step protocols, minimizing use of solvents or waste formation. Soft shaping methods, e.g. spray drying, will preserve porosity and activity of the hybrid solids. A demonstration is conducted at minipilot scale at the J&J site (Belgium), allowing LCA analysis, techno-economic assessment and elaboration of the business plan. Relevance to work program The catalysts feature new, deactivation resistant active sites; their TOF/TON is maximized by an appropriate porous structure which even can be swelling. Catalysts are produced using innovative one-step protocols to form porous hybrid catalysts as powders or even immediately as shaped objects. The molecules targeted have strong biological and pharmaceutical relevance; they target diseases like influenza, cancer or HIV (case study: Rilpivirine).

Loading Johnson Matthey collaborators
Loading Johnson Matthey collaborators