Cabin John, MD, United States
Cabin John, MD, United States

Time filter

Source Type

Cathro H.P.,University of Virginia | Bullock G.C.,University of Pittsburgh | Bonatti H.,University of Maryland, Baltimore | Meriden Z.,The John Hopkins Hospital | And 2 more authors.
Transplant Infectious Disease | Year: 2014

Background: Although the majority of post-transplant lymphoproliferative disorder (PTLD) cases are associated with Epstein-Barr virus (EBV), 20-42% of cases are EBV negative (EBV-N). The antigenic stimulus that drives EBV-N PTLD is unknown, but is likely heterogeneous. A common feature of PTLD, regardless of EBV status, is an abnormal polytypic lymphoplasmacytic infiltrate. Immunglobulin-G4 (IgG4) syndrome is also characterized by a polytypic lymphoplasmacytic infiltrate with a predominance of IgG4-positive (IgG4-P) plasma cells. Methods: We investigated the possibility of an association between EBV-N PTLD and IgG4 syndrome. Of 33 evaluated PTLD cases, 9 (27%) were EBV-N. EBV-N PTLD cases showed longer transplantation-to-diagnosis times than EBV-positive cases. Results: A single patient had a preceding benign duodenal biopsy with focally prominent IgG4-P plasma cells; however, no clinical data supported IgG4 syndrome, precluding an association between IgG4 syndrome and subsequent EBV-N PTLD in this patient. Conclusion: As none of 29 evaluable cases of PTLD (including all 9 EBV-N cases) were associated with an increase in IgG4-P plasma cells, IgG4 syndrome does not appear to play a role in the etiology of EBV-N PTLD. The significance of these findings and the current understanding of the etiology of EBV-N PTLD are discussed. © 2014 John Wiley & Sons A/S.


Ojala T.,University of Helsinki | Nupponen I.,University of Helsinki | Saloranta C.,University of Helsinki | Sarkola T.,University of Helsinki | And 3 more authors.
European Journal of Pediatrics | Year: 2015

We report a fetal case with fatal outcome having a novel mutation in the HADHB gene, coding the beta-subunit of the mitochondrial trifunctional protein. Parents had a previous pregnancy loss due to fetal heart failure and hydrops. The next pregnancy led to left ventricular noncompaction and increasing pleural effusions after 29 gestational weeks. The fetus was small for gestational age, and long bones were abnormally short. The baby was born severely asphyxiated at 32 gestational weeks by cesarean section. Intensive care was withdrawn due to failure to thrive and suspicion of a severe mitochondrial disorder. Postmortem brain MRI suggested microcephaly with a simplified gyral pattern. The lateral cerebral ventricles were normal. Chromosome analysis was normal (46, XX). Fibroblasts cultured from a skin biopsy of the baby revealed the large homozygous deletion c.1109+243_1438-703del in the HADHB gene, and heterozygous mutations were detected in both parents. The deletion has not been reported earlier. Conclusion: It is important to differentiate systemic metabolic diseases from disorders that affect only the cardiac muscle. Trifunctional protein deficiency is a relatively rare disorder of the fatty acid β-oxidation cycle. The mutation in the HADHB gene causes a systemic disease with early-onset cardiomyopathy. Understanding the molecular genetic defect of the patient allows appropriate genetic counseling of the family.What is Known:• Mitochondrial disorders as a group are an important etiology for fetal cardiomyopathies including human trifunctional protein (TFP) disorders and several other mitochondrial diseases.What is New:• We report a fetal case with fatal outcome having a novel mitochondrial trifunctional protein mutation (c.1109+243_1438-703del in the HADHB gene). © 2015, Springer-Verlag Berlin Heidelberg.


PubMed | The John Hopkins Hospital and University of Helsinki
Type: Case Reports | Journal: European journal of pediatrics | Year: 2015

We report a fetal case with fatal outcome having a novel mutation in the HADHB gene, coding the beta-subunit of the mitochondrial trifunctional protein. Parents had a previous pregnancy loss due to fetal heart failure and hydrops. The next pregnancy led to left ventricular noncompaction and increasing pleural effusions after 29 gestational weeks. The fetus was small for gestational age, and long bones were abnormally short. The baby was born severely asphyxiated at 32 gestational weeks by cesarean section. Intensive care was withdrawn due to failure to thrive and suspicion of a severe mitochondrial disorder. Postmortem brain MRI suggested microcephaly with a simplified gyral pattern. The lateral cerebral ventricles were normal. Chromosome analysis was normal (46, XX). Fibroblasts cultured from a skin biopsy of the baby revealed the large homozygous deletion c.1109+243_1438-703del in the HADHB gene, and heterozygous mutations were detected in both parents. The deletion has not been reported earlier.It is important to differentiate systemic metabolic diseases from disorders that affect only the cardiac muscle. Trifunctional protein deficiency is a relatively rare disorder of the fatty acid -oxidation cycle. The mutation in the HADHB gene causes a systemic disease with early-onset cardiomyopathy. Understanding the molecular genetic defect of the patient allows appropriate genetic counseling of the family. Mitochondrial disorders as a group are an important etiology for fetal cardiomyopathies including human trifunctional protein (TFP) disorders and several other mitochondrial diseases. We report a fetal case with fatal outcome having a novel mitochondrial trifunctional protein mutation (c.1109+243_1438-703del in the HADHB gene).


PubMed | Carnegie Mellon University, Northwestern University, The John Hopkins Hospital and University of Pittsburgh
Type: | Journal: Proceedings of SPIE--the International Society for Optical Engineering | Year: 2015

Characterization of regional left ventricular (LV) function may have application in prognosticating timely response and informing choice therapy in patients with ischemic cardiomyopathy. The purpose of this study is to characterize LV function through a systematic analysis of 4D (3D + time) endocardial motion over the cardiac cycle in an effort to define objective, clinically useful metrics of pathological remodeling and declining cardiac performance, using standard cardiac MRI data for two distinct patient cohorts accessed from CardiacAtlas.org: a) MESA - a cohort of asymptomatic patients; and b) DETERMINE - a cohort of symptomatic patients with a history of ischemic heart disease (IHD) or myocardial infarction. The LV endocardium was segmented and a signed phase-to-phase Hausdorff distance (HD) was computed at 3D uniformly spaced points tracked on segmented endocardial surface contours, over the cardiac cycle. An LV-averaged index of phase-to-phase endocardial displacement (P2PD) time-histories was computed at each tracked point, using the HD computed between consecutive cardiac phases. Average and standard deviation in P2PD over the cardiac cycle was used to prepare characteristic curves for the asymptomatic and IHD cohort. A novel biomarker of RMS error between mean patient-specific characteristic P2PD over the cardiac cycle for each individual patient and the cumulative P2PD characteristic of a cohort of asymptomatic patients was established as the RMS-P2PD marker. The novel RMS-P2PD marker was tested as a cardiac function based feature for automatic patient classification using a Bayesian Rule Learning (BRL) framework. The RMS-P2PD biomarker indices were significantly different for the symptomatic patient and asymptomatic control cohorts (p<0.001). BRL accurately classified 83.8% of patients correctly from the patient and control populations, with leave-one-out cross validation, using standard indices of LV ejection fraction (LV-EF) and LV end-systolic volume index (LV-ESVI). This improved to 91.9% with inclusion of the RMS-P2PD biomarker and was congruent with improvements in both sensitivity for classifying patients and specificity for identifying asymptomatic controls from 82.6% up to 95.7%. RMS-P2PD, when contrasted against a collective normal reference, is a promising biomarker to investigate further in its utility for identifying quantitative signs of pathological endocardial function which may boost standard image makers as precursors of declining cardiac performance.

Loading The John Hopkins Hospital collaborators
Loading The John Hopkins Hospital collaborators