Johannes Kepler University
Linz, Austria

The Johannes Kepler University of Linz is a public institution of higher education in Linz, the capital of Upper Austria. It offers bachelor's, master's, diploma and doctoral degrees in business, engineering, law, science, and the social science.Today, 19,300 students study at the park campus in the northeast of Linz, with 1 out of 9 students being from abroad. The university was the first in Austria to introduce an electronic student ID in 1998 and the whole campus has Wireless LAN coverage.The university is home of the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of science.In 2012, the Times Higher Education ranked the JKU at #41 in its list of the top 100 universities under 50 years old. According to the ranking, the JKU is the fifth best young university in the German-speaking Europe. The university attained high scores for quotations, third-party funding, and internationalization efforts. Wikipedia.

Time filter
Source Type

Johannes Kepler University and Biomedical Zet Life Science GmbH | Date: 2015-06-16

The invention relates to a polymer for tissue engineering from biodegradable polyphosphazenes, having photopolymerizable side groups, wherein the side groups of the polyphosphazenes are formed exclusively from amino acids and/or amino acid derivatives, which are bonded to the backbone of the polyphosphazene via the amino group of the amino acid and to a spacer attached to the acid group with a carbon chain of length m, which has a vinyl group at the free end, wherein m=0 to m=10.

Agency: European Commission | Branch: H2020 | Program: IA | Phase: LCE-09-2015 | Award Amount: 27.97M | Year: 2016

This proposal is an application to the EU programme Horizon 2020 and its topic Large scale energy storage (LCE-09-2015). The presented project STORE&GO will demonstrate three innovative Power to Gas storage concepts at locations in Germany, Switzerland and Italy in order to overcome technical, economic, social and legal barriers. The demonstration will pave the way for an integration of PtG storage into flexible energy supply and distribution systems with a high share of renewable energy. Using methanation processes as bridging technologies, it will demonstrate and investigate in which way these innovative PtG concepts will be able to solve the main problems of renewable energies: fluctuating production of renewable energies; consideration of renewables as suboptimal power grid infrastructure; expensive; missing storage solutions for renewable power at the local, national and European level. At the same time PtG concepts will contribute in maintaining natural gas or SNG with an existing huge European infrastructure and an already advantageous and continuously improving environmental footprint as an important primary/secondary energy carrier, which is nowadays in doubt due to geo-political reasons/conflicts. So, STORE&GO will show that new PtG concepts can bridge the gaps associated with renewable energies and security of energy supply. STORE&GO will rise the acceptance in the public for renewable energy technologies in the demonstration of bridging technologies at three living best practice locations in Europe.

Agency: European Commission | Branch: H2020 | Program: ECSEL-IA | Phase: ECSEL-17-2015 | Award Amount: 64.82M | Year: 2016

ENABLE-S3 will pave the way for accelerated application of highly automated and autonomous systems in the mobility domains automotive, aerospace, rail and maritime as well as in the health care domain. Virtual testing, verification and coverage-oriented test selection methods will enable validation with reasonable efforts. The resulting validation framework will ensure Europeans Industry competitiveness in the global race of automated systems with an expected market potential of 60B in 2025. Project results will be used to propose standardized validation procedures for highly automated systems (ACPS). The technical objectives addressed are: 1. Provision of a test and validation framework that proves the functionality, safety and security of ACPS with at least 50% less test effort than required in classical testing. 2. Promotion of a new technique for testing of automated systems with physical sensor signal stimuli generators, which will be demonstrated for at least 3 physical stimuli generators. 3. Raising significantly the level of dependability of automated systems due to provision of a holistic test and validation platform and systematic coverage measures, which will reduce the probability of malfunction behavior of automated systems to 10E-9/h. 4. Provision of a validation environment for rapid re-qualification, which will allow reuse of validation scenarios in at least 3 development stages. 5. Establish open standards to speed up the adoption of the new validation tools and methods for ACPS. 6. Enabling safe, secure and functional ACPS across domains. 7. Creation of an eco-system for the validation and verification of automated systems in the European industry. ENABLE-S3 is strongly industry-driven. Realistic and relevant industrial use-cases from smart mobility and smart health will define the requirements to be addressed and assess the benefits of the technological progress.

Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.59M | Year: 2017

Advanced Microscopy techniques are widely recognized as one of the pillars onto which the research and manufacture of Nanotechnology based products is sustained. At present, the greatest challenge faced by these techniques is the realization of fast and non-destructive tomographic images with chemical composition sensitivity and with sub-10 nm spatial resolution, in both organic and inorganic materials, and in all environmental conditions. Scanning Probe Microscopes are currently the Advanced Microscopy techniques experiencing the fastest evolution and innovation towards solving this challenge. Scanning Probe Microscopes have crossed fundamental barriers, and novel systems exist that show potential unparalleled performance in terms of 3D nanoscale imaging capabilities, imaging speed and chemical sensitivity mapping. The objective of the SPM2.0 European Training Network is to train a new generation of researchers in the science and technology of these novel Scanning Probe Microscopes, in which Europe is currently in a leading position, in order to enforce its further development and its quick and wide commercialization and implementation in public and private research centers and industrial and metrology institutions. The researchers of the network will acquire a solid state-of-the-art multidisciplinary scientific training in this field of research, covering from basic science to industrial applications, which should enable them to generate new scientific knowledge of the highest impact. In addition, they will receive a practical training on transferable skills in order to increase their employability perspectives and to qualify them to access to responsibility job positions in the private and public sectors. The final aim of the network is to consolidate Europe as the world leader in Scanning Probe Microscopy technologies and its emerging applications in key sectors like Materials, Microelectronics, Biology and Medicine.

Agency: European Commission | Branch: H2020 | Program: BBI-IA-FLAG | Phase: BBI.VC1.F1 | Award Amount: 34.95M | Year: 2016

The LIGNOFLAG project demonstrates an integrated and whole value chain oriented approach to drive forth the bio-based production of ethanol as sustainable transport fuel or chemical building block. The project approach involves the collaboration of the relevant actors along the whole value chain from feedstock (straw) supply and logistics via process co-products (lignin as biochar, sludge as fertilizer) utilisation and valorization to advanced bio-ethanol production and product distribution. The core part of the project is the first-of-a-kind commercial flagship plant for lignocellulosic feedstock to ethanol conversion (60,000 tons/year) that serves to showcase the techno-economic viability of an innovative bio-refinery concept and shall boost EU bio-ethanol production. Based on Clariants innovative technology (e.g. onsite-enzyme production, tailor-made enzymes, chemical-free pre-treatment, intensive energy integration) in combination with new harvesting techniques, smart co-product use, accurate and comprehensive Life Cycle Analysis (LCA) and flanked by an ambitious dissemination and IPR/exploitation strategy the flagship plant will contribute to the calls as well as to the BBI JU objectives highlighted in the Strategic Innovation and Research Agenda (SIRA). LIGNOFLAG fosters the essential transition to a post-petroleum EU society by decoupling economic growth from resource use and environmental degradation.

Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.41M | Year: 2016

ARCADES aims at disrupting the traditional paradigm in Computer-Aided Design (CAD) by exploiting cutting-edge research in mathematics and algorithm design. Geometry is now a critical tool in a large number of key applications; somewhat surprisingly, however, several approaches of the CAD industry are outdated, and 3D geometry processing is becoming increasingly the weak link. This is alarming in sectors where CAD faces new challenges arising from fast point acquisition, big data, and mobile computing, but also in robotics, simulation, animation, fabrication and manufacturing where CAD strives to address crucial societal and market needs. The challenge taken up by ARCADES is to invert the trend of CAD industry lagging behind mathematical breakthroughs and to build the next generation of CAD software based on strong foundations from algebraic geometry, differential geometry, scientific computing, and algorithm design. Our game-changing methods lead to real-time modelers for architectural geometry and visualisation, to isogeometric and design-through-analysis software for shape optimisation, and marine design & hydrodynamics, and to tools for motion design, robot kinematics, path planning, and control of machining tools. One of the Network SMEs estimates that the innovative impact of ARCADES may enable them to get ahead of competition for up to 2 years, thus benefiting about 40% of their customers. The participants span a multidisciplinary and multisectoral spectrum for realising our vision, all being international leaders at various stages of the pipeline. They form an outstanding ecosystem for training the next generation of applied mathematicians, computer scientists and engineers for achieving our scientific breakthroughs, and who are equipped with a double career advantage: excellent research training, and exposure to industrial research environments through a nexus of secondments among Universities, Research and Innovation Centers, and industrial teams.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: FETOPEN-01-2016-2017 | Award Amount: 3.99M | Year: 2017

Our research aims to revolutionize the electronics industry by adding intra-chip and chip-to-chip communication at the speed of light, offering a significantly reduced energy consumption. Cubic crystal phase SiGe is known to be great for electronics. We propose to develop hexagonal crystal phase SiGe (Hex-SiGe) which features a direct bandgap and will add photonic capabilities to electronics. Direct bandgap silicon has been the holy grail of the semiconductor industry for many years, since it would allow integrating both electronic and optical functionalities on a silicon platform. Recent theoretical calculations predict that hexagonal crystal phase SixGe1-x features a tunable direct bandgap from 1380-1800 nm, exactly coinciding with the low loss window for optical fibre communications. We have recently developed a generic approach to grow defect-free hexagonal SixGe1-x with tunable composition. We propose to demonstrate efficient light emission from direct bandgap SiGe, followed by the development of a SiGe nanolaser. Work towards CMOS integration is included. The demonstration of a Hex-SiGe nanolaser will serve as a game-changer for transforming the electronics industry.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-31-2016-2017 | Award Amount: 4.00M | Year: 2016

ECHOES is a multi-disciplinary research project providing policy makers with comprehensive information, data, and policy-ready recommendations about the successful implementation of the Energy Union and SET plan. Individual and collective energy choices and social acceptance of energy transitions are analysed in a multi-disciplinary process including key stakeholders as co-constructors of the knowledge. To account for the rich contexts in which individuals and collectives administer their energy choices, ECHOES utilizes three complementary perspectives: 1) individual decision-making as part of collectives, 2) collectives constituting energy cultures and life-styles, and (3) formal social units such as municipalities and states. To reduce greenhouse gas emissions and create a better Energy Union, system change is required. While technological change is a key component in this change, successful implementation of that change relies on the multi-disciplinary social science knowledge that ECHOES produces. Therefore, three broad technological foci which will run as cross-cutting issues and recurrent themes through ECHOES: smart energy technologies, electric mobility, and buildings. All three technology foci address high impact areas that have been prioritised by national and international policies, and are associated with great potential savings in greenhouse gas emissions. ECHOES uniquely comprehensive methodological approach includes a representative multinational survey covering all 28 EU countries plus Norway and Turkey, syntheses of existing data and literature, policy assessments, as well as quantitative experiments, interviews, netnography, focus groups, workshops, site visits and case studies in eight countries. All data collected in the project will be systematised in a built-for-purpose database that will serve both as an analytical tool for the project and as a valuable resource for stakeholders and researchers after the projects lifetime.

Irimia-Vladu M.,Joanneum Research | Irimia-Vladu M.,Johannes Kepler University
Chemical Society Reviews | Year: 2014

"Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices. © The Royal Society of Chemistry.

Agency: European Commission | Branch: H2020 | Program: ERC-ADG | Phase: ERC-ADG-2014 | Award Amount: 2.32M | Year: 2016

What makes music so important, what can make a performance so special and stirring? It is the things the music expresses, the emotions it induces, the associations it evokes, the drama and characters it portrays. The sources of this expressivity are manifold: the music itself, its structure, orchestration, personal associations, social settings, but also and very importantly the act of performance, the interpretation and expressive intentions made explicit by the musicians through nuances in timing, dynamics etc. Thanks to research in fields like Music Information Research (MIR), computers can do many useful things with music, from beat and rhythm detection to song identification and tracking. However, they are still far from grasping the essence of music: they cannot tell whether a performance expresses playfulness or ennui, solemnity or gaiety, determination or uncertainty; they cannot produce music with a desired expressive quality; they cannot interact with human musicians in a truly musical way, recognising and responding to the expressive intentions implied in their playing. The project is about developing machines that are aware of certain dimensions of expressivity, specifically in the domain of (classical) music, where expressivity is both essential and at least as far as it relates to the act of performance can be traced back to well-defined and measurable parametric dimensions (such as timing, dynamics, articulation). We will develop systems that can recognise, characterise, search music by expressive aspects, generate, modify, and react to expressive qualities in music. To do so, we will (1) bring together the fields of AI, Machine Learning, MIR and Music Performance Research; (2) integrate theories from Musicology to build more well-founded models of music understanding; (3) support model learning and validation with massive musical corpora of a size and quality unprecedented in computational music research.

Loading Johannes Kepler University collaborators
Loading Johannes Kepler University collaborators