Time filter

Source Type

Mainz, Germany

The Johannes Gutenberg University of Mainz is a university in Mainz, Rhineland Palatinate, Germany, named after the printer Johannes Gutenberg. With approximately 36,500 students in about 150 schools and clinics, it is among the ten largest universities in Germany. Starting on 1 January 2005 the university was reorganized into 11 faculties of study. Wikipedia.

Kuhne T.D.,Johannes Gutenberg University Mainz
Wiley Interdisciplinary Reviews: Computational Molecular Science | Year: 2014

Computer simulation methods, such as Monte Carlo or molecular dynamics, are very powerful theoretical techniques to provide detailed and essentially exact informations on rather complex classical many-body problems. With the advent of ab initio molecular dynamics (AIMD), where finite-temperature dynamical trajectories are generated using interatomic forces which are calculated on the fly using accurate electronic structure calculations, the scope of computational research has been greatly extended. This review is intended to outline the basic principles as well as being a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method and the recently devised Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics, which unifies the best of both schemes are discussed. The predictive power of the latter second-generation Car-Parrinello molecular dynamics approach is demonstrated by several applications ranging from liquid metals to semiconductors and water. This development allows for ab initio simulations on much larger length and timescales than previously thought feasible. © 2013 John Wiley & Sons, Ltd.

Orus R.,Johannes Gutenberg University Mainz
Annals of Physics | Year: 2014

This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1. d and 2. d quantum lattice systems are also discussed. © 2014 Elsevier Inc.

Michel M.C.,Johannes Gutenberg University Mainz
Annual Review of Pharmacology and Toxicology | Year: 2015

Storage dysfunction of the urinary bladder, specifically overactive bladder syndrome, is a condition that occurs frequently in the general population. Historically, pathophysiological and treatment concepts related to overactive bladder have focused on smooth muscle cells. Although these are the central effector, numerous anatomic structures are involved in their regulation, including the urothelium, afferent and efferent nerves, and the central nervous system. Each of these structures involves receptors for-and the urothelium itself also releases-many mediators. Moreover, hypoperfusion, hypertrophy, and fibrosis can affect bladder function. Established treatments such as muscarinic antagonists, β-adrenoceptor agonists, and onabotulinumtoxinA each work in part through their effects on the urothelium and afferent nerves, as do α1-adrenoceptor antagonists in the treatment of voiding dysfunction associated with benign prostatic hyperplasia; however, none of these treatments are specifically targeted to the urothelium and afferent nerves. It remains to be explored whether future treatments that specifically act at one of these structures will provide a therapeutic advantage. ©2015 by Annual Reviews. All rights reserved.

Forstermann U.,Johannes Gutenberg University Mainz | Sessa W.C.,Yale University
European Heart Journal | Year: 2012

Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS; EC They all utilize l-arginine and molecular oxygen as substrates and require the cofactors reduced nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin (BH4). All NOS bind calmodulin and contain haem. Neuronal NOS (nNOS, NOS I) is constitutively expressed in central and peripheral neurons and some other cell types. Its functions include synaptic plasticity in the central nervous system (CNS), central regulation of blood pressure, smooth muscle relaxation, and vasodilatation via peripheral nitrergic nerves. Nitrergic nerves are of particular importance in the relaxation of corpus cavernosum and penile erection. Phosphodiesterase 5 inhibitors (sildenafil, vardenafil, and tadalafil) require at least a residual nNOS activity for their action. Inducible NOS (NOS II) can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents. Inducible NOS generates large amounts of NO that have cytostatic effects on parasitic target cells. Inducible NOS contributes to the pathophysiology of inflammatory diseases and septic shock. Endothelial NOS (eNOS, NOS III) is mostly expressed in endothelial cells. It keeps blood vessels dilated, controls blood pressure, and has numerous other vasoprotective and anti-atherosclerotic effects. Many cardiovascular risk factors lead to oxidative stress, eNOS uncoupling, and endothelial dysfunction in the vasculature. Pharmacologically, vascular oxidative stress can be reduced and eNOS functionality restored with renin- and angiotensin-converting enzyme-inhibitors, with angiotensin receptor blockers, and with statins. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2011.

Hahn S.A.,Johannes Gutenberg University Mainz
Blood | Year: 2013

Glycoprotein A repetitions predominant (GARP) is expressed on the surface of activated human regulatory T cells (Treg) and regulates the bioavailability of transforming growth factor-β (TGF-β). GARP has been assumed to require membrane anchoring. To investigate the function of GARP in more detail, we generated a soluble GARP protein (sGARP) and analyzed its impact on differentiation and activation of human CD4+ T cells. We demonstrate that sGARP efficiently represses proliferation and differentiation of naïve CD4+ T cells into T effector cells. Exposure to sGARP induces Foxp3, decreases proliferation and represses interleukin (IL)-2 and interferon-γ production, resulting in differentiation of naïve T cells into induced Treg. This is associated with Smad2/3 phosphorylation and partially inhibited by blockade of TGF-β signaling. Furthermore, in the presence of the proinflammatory cytokines IL-6 and IL-23, sGARP facilitates the differentiation of naïve T cells into Th17 cells. More important, in a preclinical humanized mouse model of xenogeneic graft-versus-host disease (GVHD), sGARP prevents T cell-mediated destructive inflammation by enhancing Treg and inhibiting T effector cell activity. These results demonstrate a crucial role of sGARP in modulation of peripheral tolerance and T effector cell function, opening the possibility to use sGARP as a potent immunomodulator of inflammatory diseases including transplant rejection, autoimmunity, and allergy.

Discover hidden collaborations