Entity

Time filter

Source Type


Hua X.,Nankai University | Mao W.,Nanyang Normal University | Fan Z.,Nankai University | Ji X.,Nankai University | And 9 more authors.
Australian Journal of Chemistry | Year: 2014

Three series of new anthranilic diamide derivatives containing sulfide, N-cyanomethylsulfilimine, and N-cyanomethylsulfoximine groups were designed and synthesized by coupling the active substructures of anthranilic diamides and sulfoxaflor. The structures of the synthesized compounds were confirmed by infrared spectroscopy, 1H and 13C NMR, and elemental analysis. Several unique structural characteristics were revealed via the crystal structure analysis of compound N-(2-(2-methyl-2-(methylthio)propylcarbamoyl)-4-chloro-6-methylphenyl)-3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide 16e. Bioassay results indicated that most of the synthesized compounds showed superior insecticidal activities against Mythimna separata and Plutella xylostella when compared with the positive control cyantraniliprole. In particular, N-(2-(2-methyl-2-(N-cyanomethylsulfideimino)propylcarbamoyl)-4-chloro-6-methylphenyl)-3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide 17e showed excellent insecticidal activity against Mythimna separata, with a mortality rate of 100% at a concentration of 1μgmL-1. These results indicated that sulfide, N-cyanomethylsulfilimine, and N-cyanomethylsulfoximine moieties, as important active substructures, could improve or maintain the activity of the anthranilic diamide and promote novel pesticide development. © CSIRO 2014. Source

Discover hidden collaborations