Entity

Time filter

Source Type


Gao D.,Nanchang University | Xu Z.,Nanchang University | Qiao P.,Nanchang University | Liu S.,Nanchang University | And 6 more authors.
PLoS ONE | Year: 2013

Caspase-3, the essential effector caspase, plays a pivotal role during caspase-dependent apoptosis. In this study, we isolated and characterized caspase-3A gene from common carp. The common carp caspase-3A comprising 273 amino acids showed 71.8% sequence similarity and 59.3% sequence identity to human caspase-3. It exhibited an evolutionarily conserved structure of mammalian caspase-3 genes, including a pro-domain, a large subunit, a small subunit and other motifs such as the pentapeptide active-site motif (QACRG) and the putative cleavage sites at the aspartic acids. Phylogenetic analysis demonstrated that common carp caspase-3A formed a clade with cyprinid fish caspase-3. To assess whether caspase-3A is involved in cadmium (Cd)-induced cell apoptosis in common carp, a Cd exposure experiment was performed. TUNEL analysis showed that Cd triggered liver cell apoptosis; caspase-3A activity was markedly increased; its proenzyme level was significantly decreased, and the levels of its cleaved forms were markedly increased. However, real-time quantitative PCR analysis revealed that the mRNA transcript level of caspase-3A was not significantly elevated. Immunoreactivities were observed in the cytoplasm of hepatocytes by immunohistochemical detection. The findings indicates that Cd can trigger liver cell apoptosis through the activation of caspase-3A. Caspase-3A may play an essential role in Cd-induced apoptosis. © 2013 Gao et al.


Wei-xu H.,Fudan University | Qin X.,Chinese Institute of Clinical Medical Sciences | Zhu W.,Jiangxi Academy of Medical science | Yuan-yi C.,Chinese Institute of Clinical Medical Sciences | And 5 more authors.
Molecular Immunology | Year: 2014

Background: Interleukin-1 beta (IL-1β) plays pivotal roles in the progression of allergic airway inflammation. This study aims to determine whether the blockade of IL-1β can inhibit airway inflammation in guinea pigs with allergic asthma induced by the inhalation of aerosolized ovalbumin (OVA). Methods: Healthy guinea pigs treated with saline were used as normal controls (group C). The guinea pigs with allergic asthma induced by the inhalation of aerosolized OVA were randomly divided into three groups: (1) the M group containing negative control animals treated with saline; (2) the Z1 group containing animals treated by the inhalation of atomized 0.1% anti-IL-1β immunoglobulin yolk (IgY); and (3) the Z2 group containing positive control animals that were treated with budesonide. The inflammatory cells in the peripheral blood (PB) and bronchoalveolar lavage fluid (BALF) were evaluated using methylene blue and eosin staining. Cytokine concentrations were measured using an enzyme-linked immunosorbent assay. Pulmonary sections were examined using hematoxylin-eosin staining. Results: Allergic inflammation and damage to the pulmonary tissues were decreased in the Z1 group compared to the M group. Eosinophils and neutrophils in the PB and BALF were significantly decreased in the Z1 group compared to the M group (P<0.05). Treatment with anti-IL-1β IgY significantly reduced the levels of IL-1β, IL-4, IL-8, IL-13, TNF-α, TGF-β1 and IgE in the BALF (P<0.05). Conclusion: The inhalation of aerosolized anti-IL-1β IgY inhibits pathological responses in the pulmonary tissues of guinea pigs with allergic asthma. The inhibitory activity may be due to the decrease in the numbers of eosinophils and neutrophils and the reduced levels of inflammatory cytokines and IgE in the PB and BALF. © 2013 Elsevier Ltd.


Gao D.,Nanchang University | Xu Z.,Nanchang University | Zhang X.,Nanchang University | Zhu C.,Nanchang University | And 3 more authors.
Developmental and Comparative Immunology | Year: 2013

Caspase-8, the essential initiator caspase, is believed to play a pivotal role in death receptor-mediated apoptotic pathway. It also participates in mitochondria-mediated apoptosis via cleavage of proapoptotic Bid in mammals. However, its role in fish remains elusive in Cadmium-induced apoptotic pathway. In this study, we isolated the caspase-8 gene from common carp, one of the most important industrial aquatic animals in China using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of caspase-8 comprised 475 amino acids, which showed approximately 64.1% identity and 79.8% similarity to zebrafish (. Danio rerio) caspase-8, possessed two conserved death effector domains, a large subunit and a small subunit. Phylogenetic analysis demonstrated that caspase-8 formed a clade with zebrafish caspase-8. In kidney, cadmium (Cd) exposure triggered apoptosis and increased caspase-3 and -9 activities, whereas it did not affect caspase-8 activity. Real-time quantitative PCR analysis revealed that caspase-8 transcriptional level was not significantly increased in kidney after exposure to Cd. Using Western blot analysis, no caspase-8 cleaved fragment was detected and no significant alteration of procaspase-8 level was found with the same Cd-treated condition. Moreover, the immunopositive staining was predominantly limited to the cytoplasm of renal tubular epithelial cells and no remarkable changes of immunoreactivities were observed using immunohistochemical detection after Cd treatment. The results reveal that Cd can trigger apoptosis, while it cannot activate caspase-8 in purse red common carp. © 2013.


Gong Y.,Nanchang University | Tao L.,Nanchang University | Jing L.,Nanchang University | Liu D.,Nanchang University | And 4 more authors.
PLoS ONE | Year: 2016

The host immune response plays an important role in the pathogenesis of Helicobacter pylori infection. The aim of this study was to clarify the immune pathogenic mechanism of Helicobacter pylori infection via TLR signaling and gastric mucosal Treg cells in mice. To discover the underlying mechanism, we selectively blocked the TLR signaling pathway and subpopulations of regulatory T cells in the gastric mucosa of mice, and examined the consequences on H. pylori infection and inflammatory response as measured by MyD88, NF-κB p65, and Foxp3 protein expression levels and the levels of Th1, Th17 and Th2 cytokines in the gastric mucosa. We determined that blocking TLR4 signaling in H. pylori infected mice decreased the numbers of Th1 and Th17 Treg cells compared to controls (P < 0.001-0.05), depressed the immune response as measured by inflammatory grade (P < 0.05), and enhanced H. pylori colonization (P < 0.05). In contrast, blocking CD25 had the opposite effects, wherein the Th1 and Th17 cell numbers were increased (P < 0.001-0.05), immune response was enhanced (P < 0.05), and H. pylori colonization was inhibited (P < 0.05) compared to the non-blocked group. In both blocked groups, the Th2 cytokine IL-4 remained unchanged, although IL-10 in the CD25 blocked group was significantly decreased (P < 0.05). Furthermore, MyD88, NF-κB p65, and Foxp3 in the non-blocked group were significantly lower than those in the TLR4 blocked group (P < 0.05), but significantly higher than those of the CD25 blocked group (P < 0.05). Together, these results suggest that there might be an interaction between TLR signaling and Treg cells that is important for limiting H. pylori colonization and suppressing the inflammatory response of infected mice. Copyright © 2016 Gong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Ding J.-H.,Nanchang University | Yuan L.-Y.,Jiangxi Academy of Medical science | Huang R.-B.,Nanchang University | Chen G.-A.,Nanchang University
European Journal of Haematology | Year: 2014

Objectives: Aspirin (ASA) has been frequently used for thromboprophylaxis in patients with multiple myeloma (MM) when treated with thalidomide or lenalidomide. Despite the well-recognized chemopreventive role of ASA in some solid tumors particularly for colon cancer, whether ASA displays the antimyeloma activity remains unclear. Methods: MM1.S and RPMI-8226 cell lines harboring K-Ras and N-Ras mutation, respectively, were treated with various concentrations of ASA for different hours. The cell proliferation and apoptosis were performed to explore the effects of ASA on myeloma. Then, the exact mechanisms governing ASA's antimyeloma were explored by qRT-PCR and Western blot. Also, the effect of ASA on tumor growth was observed in NOD/SCID mice bearing myeloma xenografts. Results: ASA of 0-10 mm concentration inhibits proliferation MM1.S and RPMI-8226 cells in time- and dose-dependent manner. The myeloma cells exposed to ASA treatment displayed concentration-dependent apoptosis, which was closely associated with activation of caspases, upregulation of Bax, and downregulation of Bcl-2 and VEGF. Study in vivo revealed that ASA administration retarded the tumor growth accompanying the survival time of mice bearing myeloma xenografts. Conclusions: ASA exerted antiproliferative and pro-apoptotic action in myeloma cells in vitro and delayed the growth of human myeloma cells in vivo. The underlying mechanisms were ascribed to regulation of Bcl-2 and Bax and suppression of VEGF. © 2014 John Wiley & Sons A/S.

Discover hidden collaborations