Entity

Time filter

Source Type


Chen W.,Nanjing Medical University | Chen W.,Jiangsu Provinces Key Medical Center for Hepatobiliary Surgery | Wang Z.,Nanjing Medical University | Wang Z.,Jiangsu Provinces Key Medical Center for Hepatobiliary Surgery | And 4 more authors.
Gastroenterology Research and Practice | Year: 2013

PP2A is a family of mammalian serine/threonine phosphatases that is involved in the control of many cellular functions including protein synthesis, cellular signaling, cell cycle determination, apoptosis, metabolism, and stress responses through the negative regulation of signaling pathways initiated by protein kinases. Rapid progress is being made in the understanding of PP2A complex and its functions. Emerging studies have correlated changes in PP2A with human diseases, especially cancer. PP2A is comprised of 3 subunits: a catalytic subunit, a scaffolding subunit, and a regulatory subunit. The alternations of the subunits have been shown to be in association with many human malignancies. Therapeutic agents targeting PP2A inhibitors or activating PP2A directly have shed light on the therapy of cancers. This review focuses on PP2A structure, cancer-associated mutations, and the targeting of PP2A-related molecules to restore or reactivate PP2A in anticancer therapy, especially in digestive system cancer therapy. © 2013 Weibo Chen et al. Source


Qu Z.,Nanjing University | Qu Z.,Jiangsu Provinces Key Medical Center for Hepatobiliary Surgery | Jiang C.,Nanjing University | Jiang C.,Jiangsu Provinces Key Medical Center for Hepatobiliary Surgery | And 4 more authors.
International Journal of Clinical and Experimental Medicine | Year: 2015

Exosomes are small membranous vesicles about 30~100 nm in diameter and formed from inward budding of the limiting membrane of multi-vesicular bodies (MVB). Exosomes are secreted by most cell types (including hepatocellular carcinoma cells) into the extracellular environment and can be isolated from various body fluids. Exosomes have broad biological function through delivering contained molecules to the target cells. Although limited studies on hepatocellular carcinoma (HCC) exosomes, increasing observations suggest that exosomes are important in HCC metastatic and prognosis, and exosomes are potential new molecular biomarkers for diagnosis and prognosis of HCC. In this review, we briefly summarize the latest findings on HCC exosomes, and their potential functions for novel diagnostic and therapeutic approaches of HCC. © 2015, E-Century Publishing Corporation. All rights Reserved. Source


Wang Z.,Nanjing Medical University | Wang Z.,Jiangsu Provinces Key Medical Center for Hepatobiliary Surgery | Cao Y.,Nanjing Medical University | Cao Y.,Jiangsu Provinces Key Medical Center for Hepatobiliary Surgery | And 7 more authors.
PLoS ONE | Year: 2012

Background: Single nucleotide polymorphisms (SNPs) in microRNA-coding genes may participate in the process of carcinogenesis by altering the expression of tumor-related microRNAs. It has been suggested that two common SNPs rs2910164 in miR-146a and rs11614913 in miR-196a2 are associated with susceptibility to hepatocellular carcinoma (HCC). However, published results are inconsistent and inconclusive. In the present study, we performed a meta-analysis to systematically summarize the possible association between the two SNPs and the risk for HCC. Methodology/Principal Findings: We conducted a search of case-control studies on the associations of SNPs rs2910164 and/or rs11614913 with susceptibility to HCC in PubMed, EMBASE, ISI Web of Science, Cochrane Central Register of Controlled Trials, ScienceDirect, Wiley Online Library and Chinese National Knowledge Infrastructure databases. Data from eligible studies were extracted for meta-analysis. HCC risk associated with the two polymorphisms was estimated by pooled odds ratios (ORs) and 95% confidence intervals (95% CIs). 5 studies on rs2910164 and 4 studies on rs11614913 were included in our meta-analysis. Our results showed that neither allele frequency nor genotype distribution of the two polymorphisms was associated with risk for HCC in all genetic models. Similarly, subgroup analysis in Chinese population showed no association between the two SNPs and the susceptibility to HCC. Conclusions/Significance: This meta-analysis suggests that two common SNPs rs2910164 and rs11614913 are not associated with the risk of HCC. Well-designed studies with larger sample size and more ethnic groups are required to further validate the results. © 2012 Wang et al. Source


Chen W.,Nanjing Medical University | Chen W.,Jiangsu Provinces Key Medical Center for Hepatobiliary Surgery | Wu J.,Nanjing University | Shi H.,Nanjing University | And 10 more authors.
BioMed Research International | Year: 2014

Purpose. Tumor microenvironment confers drug resistance to kinase inhibitors by increasing RKT ligand levels that result in the activation of cell-survival signaling including PI3K and MAPK signals. We assessed whether HSC-LX2 coculture conferred sorafenib resistance in Huh7 and revealed the mechanism underlying the drug resistance. Experimental Design. The effect of LX2 on sorafenib resistance was determined by coculture system with Huh7 cells. The rescue function of LX2 supernatants was assessed by MTT assay and fluorescence microscopy. The underlying mechanism was tested by administration of pathway inhibitors and manifested by Western blotting. Results. LX2 coculture significantly induced sorafenib resistance in Huh7 by activating p-Akt that led to reactivation of p-ERK. LX2 secreted HGF into the culture medium that triggered drug resistance, and exogenous HGF could also induce sorafenib resistance. The inhibition of p-Akt blocked sorafenib resistance caused by LX2 coculture. Increased phosphorylation of Jak2 and Stat3 was also detected in LX2 cocultured Huh7 cells. The Jak inhibitor tofacitinib reversed sorafenib resistance by blocking Jak2 and Stat3 activation. The combined administration of sorafenib and p-Stat3 inhibitor S3I-201 augmented induced apoptosis even in the presence of sorafenib resistance. Conclusions. HSC-LX2 coculture induced sorafenib resistance in Huh7 through multiple pathways: HGF/c-Met/Akt pathway and Jak2/Stat3 pathway. A combined administration of sorafenib and S3I-201 was able to augment sorafenib-induced apoptosis even in the presence of LX2 coculture. © 2014 Weibo Chen et al. Source

Discover hidden collaborations