Entity

Time filter

Source Type


Zhang Y.,Changshu Institute of Technology | Zhang Y.,Jiangsu Key Laboratory of Recycling and Reuse Technology for Mechanical and Electronic Products | Zhang Y.,Xuzhou Institute of Technology | Yang L.,Changshu Institute of Technology | And 5 more authors.
Optics and Laser Technology | Year: 2016

The pulsed laser deposited Ni-based superalloy coating was fabricated with successive 12 layers using single tracks. The microstructure of the deposited coating was observed by scanning electron microscopy (SEM). The grain growth and the grain boundary misorientation were investigated by electron backscatter diffraction (EBSD), the precipitation phase was determined by transmission electron microscope (TEM). The results showed that the dendrites were the most common microstructure in the coating, and the dendritic growth orientation was paralleled to the direction of the laser deposition. The dendrite got coarser and its space was increased with increasing laser deposited layers. Most grains grew along the preferential grain orientation 〈001〉 and formed anisotropy with grain boundaries misorientation angle about 2° in the pulsed laser deposited coating. The grain size along the texture orientation was 3-10 times larger than that in the transverse orientation. The cross section microhardness of the coating ranged between 240-280 HV, and decreased along the depositional direction due to the reasons of the variation of eutectic morphology, grain size distribution, grain misorientation and a small amounts of strengthening phase precipitation. © 2016 Elsevier Ltd. All rights reserved. Source


Zhang Y.,Changshu Institute of Technology | Zhang Y.,Jiangsu Key Laboratory of Recycling and Reuse Technology for Mechanical and Electronic Products | Zhang Y.,Xuzhou Institute of Technology | Yang L.,Changshu Institute of Technology | And 4 more authors.
Journal of Materials Engineering and Performance | Year: 2015

The indentation creep behavior of Mg-4Al-RE-0.8Ca (AEC4108) alloy was investigated with a homemade apparatus. The microstructure of the AEC4108 alloy and the chemical composition of the precipitation phases in the alloy before and after creep test were investigated by scanning electron microscope and energy-dispersive spectroscopy. The results reveal that the steady-state indentation creep rate of the AEC4108 alloy is increased with increasing temperature and applied stress. The logarithm of the steady-state creep rates is linearly related to the logarithm of the stress and the reciprocal of the absolute temperature. The indentation creep parameters of AEC4108 alloy are correlated using an empirical equation (Formula presented.). The thin acicular Al11La3 and the bone-shaped Al2Ca are precipitated along the grain boundaries, and the granular Al2La is formed within the grain. The indentation creep rate of AEC4108 alloy is controlled by the grain boundary slipping led by viscous dislocation movement. The indentation creep resistance of the AEC4108 alloy under temperature 398-448 K and stress 55-95 MPa is guaranteed by the precipitated phases with high thermal stability pinning at the grain boundary and within the grain. © 2015 ASM International Source


Ziqiang Z.,Changshu Institute of Technology | Ziqiang Z.,Jiangsu Key Laboratory of Recycling and Reuse Technology for Mechanical and Electronic Products | Guohong D.,Changshu Institute of Technology | Guohong D.,Jiangsu Key Laboratory of Recycling and Reuse Technology for Mechanical and Electronic Products | And 3 more authors.
Open Mechanical Engineering Journal | Year: 2015

In the process of recycling EOL (end of life) products, disassembly is an important stage. Moreover, there are several targets for disassembly: reuse, remanufacturing and material recycling. In order to improve the efficiency of disassembly, only the component which need to be reused or remanufactured need to be disassembled with nondestructive method. The rest components which recycled for material can be disassembled with partial destructive method. Namely, partial destructive disassembly is more practical than total disassembly within recycling process for EOL products. In this paper, the generally used partial destructive disassembly methods are analyzed. And several rules are defined for reconstructing the hybrid graph of EOL product. And then, an extended Floyd algorithm is proposed for searching optimized disassembly sequence. With this algorithm, the material properties of parts, connection properties between parts or components are taking into account. By ranking the cost of several possible disassembly path, the optimal disassembly sequence is obtained for target component. At last, a soybean milk machine is used as a study case to verify the former approach. © Ziqiang et al. Source

Discover hidden collaborations