Jiangsu Key Laboratory of Molecular Medicine

Nanjing, China

Jiangsu Key Laboratory of Molecular Medicine

Nanjing, China

Time filter

Source Type

Shi C.,Nanjing University | Shi C.,Jiangsu Key Laboratory of Molecular Medicine | Lv T.,Nanjing University | Lv T.,Jiangsu Key Laboratory of Molecular Medicine | And 5 more authors.
Journal of Cellular Biochemistry | Year: 2015

Accumulating evidence has demonstrated that stem cells have the ability to repair the lung tissue injuries following either injection of cultured cells or bone marrow transplantation. As a result, increasing attention has focused on the lung resident mesenchymal stem cells (LR-MSCs) for repairing damaged lung tissues. Meanwhile, some studies have revealed that Wnt/β-catenin signaling plays an important role in the epithelial differentiation of mesenchymal stem cells (MSCs). In the current study, our aim was to explore the roles of Wnt/β-catenin signaling on cell proliferation and epithelial differentiation of LR-MSCs. We have successfully isolated the stem cell antigen (Sca)-1+CD45-CD31- cells which were proposed to be LR-MSCs by magnetic-activated cell sorting (MACS). Furthermore, we demonstrated the expression of epithelial markers on LR-MSCs following indirect co-culture of these cells with alveolar epithelial type II (ATII) cells, confirming the epithelial phenotype of LR-MSCs following co-culture. In order to clarify the regulatory mechanisms of Wnt/β-catenin signaling in epithelial differentiation of LR-MSCs, we measured the protein levels of several important members involved in Wnt/β-catenin signaling in the presence or absence of some canonical activators and inhibitors of the β-catenin pathways. In conclusion, our study demonstrated that Wnt/β-catenin signaling may be an essential mechanism underlying the regulation of epithelial differentiation of LR-MSCs. J. Cell. Biochem. 116: 1532-1539, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

Fan H.,Nanjing University | Zhao G.,Nanjing University | Liu L.,Nanjing University | Liu F.,Nanjing University | And 6 more authors.
Cellular and Molecular Immunology | Year: 2012

Mesenchymal stem cells (MSCs) have been used experimentally for treating inflammatory disorders, partly due to their immunosuppressive properties. Although interleukin-1β (IL-1β) is one of the most important inflammatory mediators, growing evidence indicates that IL-1β signaling elicits the immunosuppressive properties of MSCs. However, it remains unclear how IL-1β signaling accomplishes this activity. Here, we focus on the therapeutic efficacy of IL-1β-primed MSCs in the dextran sulfate sodium (DSS)-induced colitis model, in addition to the underlining mechanisms. We first found that IL-1β-primed MSCs, without any observable phenotype change in vitro, significantly attenuated the development of DSS-induced murine colitis. Moreover, IL-1β-primed MSCs modulated the balance of immune cells in the spleen and the mesenteric lymph nodes (MLNs) through elevating cyclooxygenase-2 (COX-2), IL-6 and IL-8 expression and influencing the polarization of peritoneal macrophages. Importantly, IL-1β-primed MSCs possessed an enhanced ability to migrate to the inflammatory site of the gut via upregulation of chemokine receptor type 4 (CXCR4) expression. In summary, IL-1β-primed MSCs have improved efficacy in treating DSS-induced colitis, which at least partly depends on their increased immunosuppressive capacities and enhanced migration ability. © 2012 CSI and USTC. All rights reserved.

Zhao X.,Nanjing University | Liu L.,Nanjing University | Liu D.,Nanjing University | Fan H.,Nanjing University | And 4 more authors.
American Journal of Reproductive Immunology | Year: 2012

Problem: Progesterone (P4) plays a central role in the establishment and maintenance of pregnancy. It also has profound effects on the regulation of immune responses. Mesenchymal stem cells (MSCs), which are thought to have the ability to modulate immunocyte activation, are present in human endometrium and deciduas and highly express progesterone receptor (PR). Especially, during pregnancy, both P4 and MSCs are present and regulatively changed at the fetal-maternal interface, but the effect of P4 on the MSCs remains unknown. Therefore, in this study, we investigated the effects of P4 on the immunomodulatory ability of MSCs and the underlying mechanisms. Method of study: Mesenchymal stem cells were obtained from human umbilical cords. The effects of P4 on the cell morphology, phenotype, proliferation, apoptosis, and expression levels of cytokine and protein were examined. Results: Progesterone did not affect the phenotype, morphology, proliferation, and apoptosis of MSCs, but promoted the production of PGE2 and IL-6 in MSCs. Furthermore, the up-regulation of PGE2 and IL-6 was related to the activation of p38 and NF-κB. Conclusions: Progesterone enhances immunomodulatory function of MSCs through up-regulation of PGE2 and IL-6. The data suggest that P4-regulated MSCs may play a crucial role in modulating the local immune balance of fetal-maternal interface. © 2012 John Wiley & Sons A/S.

Chen S.,Nanjing Medical University | Zhao G.,Nanjing Medical University | Miao H.,Nanjing University | Tang R.,Nanjing University | And 6 more authors.
FEBS Letters | Year: 2015

Mesenchymal stem cells (MSCs) play an important role in the pathology of preeclampsia (PE). Our previous microarray analysis found that microRNA-494 (miR-494) is highly expressed in decidua-derived MSCs (dMSCs) from PE. We hypothesized that aberrant expression of miR-494 in dMSCs is involved in PE development. In the present study, we found that miR-494 arrests G1/S transition in dMSCs by targeting CDK6 and CCND1. We also found that supernatant from miR-494-overexpressing dMSCs reduces HTR-8/SVneo migration and impairs HUVEC capillary formation by suppressing VEGF. Taken together, we report an unrecognized mechanism of miR-494 affecting dMSC proliferation and function in the pathology of PE. © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Gong W.,Nanjing University | Hu E.,Nanjing University | Dou H.,Nanjing University | Song Y.,Nanjing University | And 6 more authors.
British Journal of Pharmacology | Year: 2014

BACKGROUND AND PURPOSE Sepsis is a clinical condition characterized by overwhelming systemic inflammation with high mortality rate and high prevalence, but effective treatment is still lacking. Toll-like receptor 3 (TLR3) is an endogenous sensor, thought to regulate the amplification of immune response during sepsis. Modulators of TLR3 have an advantage in the treatment of sepsis. Here, we aimed to explore the mechanism of a monosubstituted 1,2-benzenediamine derivative FC-99 {N1-[(4-methoxy)methyl]-4- methyl-1,2-benzenediamine}on modulating TLR3 expression and its therapeutic potential on mouse model of sepsis.EXPERIMENTAL APPROACH Cells were pretreated with FC-99 followed by poly(I:C) or IFN-α stimulation; TLR3 and other indicators were assayed. Female C57BL/6 mice were subjected to sham or caecal ligation puncture (CLP) surgery after i.p. injection of vehicle or FC-99; serum and tissues were collected for further experiments.KEY RESULTS FC-99 suppressed inflammatory response induced by poly(I:C) with no effect on cell viability or uptake of poly(I:C). FC-99 also inhibited TLR3 expression induced by not only poly(I:C) but also by exogenous IFN-α. This inhibition of FC-99 was related to the poly(I:C)-evoked IRF3/IFN-α/JAK/STAT1 signalling pathway. In CLP-induced model of sepsis, FC-99 administration decreased mice mortality and serum levels of inflammatory factors, attenuated multiple organ dysfunction and enhanced bacterial clearance. Accordingly, systemic and local expression of TLR3 was reduced by FC-99 in vivo.CONCLUSION AND IMPLICATIONS FC-99 reversed TLR3 expression and ameliorate CLP-induced sepsis in mice. Thus, FC-99 will be a potential therapeutic candidate for sepsis. © 2014 The British Pharmacological Society.

Fan H.,Nanjing University | Liu F.,Nanjing University | Dong G.,Nanjing University | Ren D.,Nanjing University | And 6 more authors.
Cell Death and Disease | Year: 2014

B-cell abnormality including excessive activation and lymphopenia is a central feature of systemic lupus erythematosus (SLE). Although activation threshold, auto-reaction and death of B cells can be affected by intrinsical and/or external signaling, the underlying mechanisms are unclear. Herein, we demonstrate that co-activation of Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) pathways is a core event for the survival/dead states of B cells in SLE. We found that the mortalities of CD19+CD27- and CD19+IgM+ B-cell subsets were increased in the peripheral blood mononuclear cells (PBMCs) of SLE patients. The gene microarray analysis of CD19+ B cells from active SLE patients showed that the differentially expressed genes were closely correlated to TLR7, BCR, apoptosis, necroptosis and immune pathways. We also found that co-activation of TLR7 and BCR could trigger normal B cells to take on SLE-like B-cell characters including the elevated viability, activation and proliferation in the first 3 days and necroptosis in the later days. Moreover, the necroptotic B cells exhibited mitochondrial dysfunction and hypoxia, along with the elevated expression of necroptosis-related genes, consistent with that in both SLE B-cell microarray and real-time PCR verification. Expectedly, pretreatment with the receptor-interacting protein kinase 1 (RIPK1) inhibitor Necrostatin-1, and not the apoptosis inhibitor zVAD, suppressed B-cell death. Importantly, B cells from additional SLE patients also significantly displayed high expression levels of necroptosis-related genes compared with those from healthy donors. These data indicate that co-activation of TLR7 and BCR pathways can promote B cells to hyperactivation and ultimately necroptosis. Our finding provides a new explanation on B-cell lymphopenia in active SLE patients. These data suggest that extrinsic factors may increase the intrinsical abnormality of B cells in SLE patients. © 2014 Macmillan Publishers Limited. All rights reserved.

Liu L.,Nanjing University | Zhao G.,Nanjing University | Fan H.,Nanjing University | Zhao X.,Nanjing University | And 5 more authors.
PLoS ONE | Year: 2014

Pre-eclampsia (PE) is thought to be a pregnancy-induced autoimmune disease. Despite several strategies carried out for targeting specific factors relevant to its pathogenesis, PE remains potentially fatal to some patients. Here, we reported a way to isolate mesenchymal stem cells (MSCs) from decidua. The MSCs not only exhibited differentiation and self-renewal capacities, they also possessed immunomodulatory functions and secreted some soluble mediators including IL-6, TGF-β, IDO, VEGF and COX-2. Most importantly, the MSCs were specifically provided with the ability to suppress T cells proliferation by IDO in response to inflammatory cytokine IFN-γ. Moreover, we developed a Th1 cell-induced PE mouse model which displayed a high level of pathogenesis factor TNF-α. Strikingly, MSCs-based therapy significantly ameliorated both clinical and histopathological severity of PE symptoms including decreasing the blood pressure and proteinuria, suppressing glomerulonephritis, protecting the feto-placental development. The therapy also reversed abnormal TNF-α expression in uterine and splenic lymphocytes. These data suggest that MSCs may ameliorate Th1-induced PE-like symptoms in mice via the suppression of TNF-α and MSCs-based therapy may provide a potential novel method for PE. © 2014 Liu et al.

Wang Y.,Nanjing University | Fan H.,Nanjing University | Zhao G.,Nanjing Medical University | Liu D.,Nanjing University | And 5 more authors.
FEBS Journal | Year: 2012

Pre-eclampsia is thought to be a systemic disease of maternal endothelial cell dysfunctions. miRNAs regulate various basic biological functions in cells, including stem cells. Mesenchymal stem cells exist in almost all tissues and are the key cellular source for tissue repair and regeneration. Our aims are to investigate whether miRNAs regulate MSCs in fetal-maternal interfaces to influence the pathogenesis of pre-eclampsia. The differential expression of miRNAs in decidua-derived mesenchymal stem cells of all patients with severe pre-eclampsia (n = 20) and normal groups (n = 20) was first screened by microarray analysis and validated by quantitative real-time PCR analysis. The integrated bioinformatics analysis showed that miR-16 showed the highest number of connections in the miRNA GO network and the miRNA gene network. Moreover, over-expressed miR-16 inhibited the proliferation and migration of decidua-derived mesenchymal stem cells and induced cell-cycle arrest by targeting cyclin E1. Interestingly, over-expression of miR-16 by decidua-derived mesenchymal stem cells reduced the ability of human umbilical vein endothelial cells to form blood vessels and reduced the migration of trophoblast cells. Furthermore, decidua-derived mesenchymal stem cell-expressed endothelial growth factor VEGF-A was involved in migration of trophoblast cells and human umbilical vein endothelial cells as well as tube and network formation. Importantly, the levels of cyclin E1 and VEGF-A were negatively correlated with the level of miR-16 expression in decidua-derived mesenchymal stem cells from the patients with severe pre-eclampsia. Together, these data suggest that the alteration of miR-16 expression in decidua-derived mesenchymal stem cells may be involved in the development of pre-eclampsia. © 2012 FEBS.

Zhao X.,Nanjing University | Liu D.,Jiangsu Key Laboratory of Molecular Medicine | Gong W.,Nanjing University | Zhao G.,Nanjing University | And 3 more authors.
Stem Cells | Year: 2014

Mesenchymal stem cells (MSCs) are attractive candidates for clinical therapeutic applications. Recent studies indicate MSCs express active Toll-like receptors (TLRs), but their effect on MSCs and the underlying mechanisms remain unclear. In this study, we found that, after treating human umbilical cord MSCs with various TLR ligands, only TLR3 ligand, poly(I:C), could significantly increase the expression of cyclooxygenase-2 (COX-2). Furthermore, poly(I:C) could enhance MSCs' anti-inflammatory effect on macrophages. Next, we focused on the regulatory roles of microRNAs (miRNAs) in the process of poly(I:C) activating MSCs. Our experiments indicated that miR-143 expression was significantly decreased in MSCs with poly(I:C) treatment, and the expression level of miR-143 could regulate the effect of poly(I:C) on MSCs' immunosuppressive function. Subsequent results showed that the reporter genes with putative miR-143 binding sites from the transforming growth factor-b-activated kinase-1 (TAK1) and COX-2 30 untranslated regions were downregulated in the presence of miR-143. In addition, mRNA and protein expression of TAK1 and COX-2 in MSCs was also downregulated with miR-143 overexpression, suggesting that TAK1 and COX-2 are target genes of miR-143 in MSCs. Consistent with miR-143 overexpression, TAK1 interference also attenuated MSCs' immunosuppressive function enhanced by poly(I:C). Additionally, it was shown that TLR3-activated MSCs could improve survival in cecal ligation and puncture (CLP)-induced sepsis, while miR-143 overexpression reduced the effectiveness of this therapy. These results proved that poly(I:C) improved the immunosuppressive abilities of MSCs, revealed the regulatory role of miRNAs in the process, and may provide an opportunity for potential novel therapies for sepsis. © AlphaMed Press 2013.

Dong G.,Nanjing University | You M.,Nanjing University | Ding L.,Nanjing University | Fan H.,China Pharmaceutical University | And 4 more authors.
Molecules and Cells | Year: 2015

Recognition of cytosolic DNA initiates a series of innate immune responses by inducing IFN-I production and subsequent triggering JAK1-STAT1 signaling which plays critical roles in the pathogenesis of infection, inflammation and autoimmune diseases through promoting B cell activation and antibody responses. The stimulator of interferon genes protein (STING) has been demonstrated to be a critical hub of type I IFN induction in cytosolic DNA-sensing pathways. However, it still remains unknown whether cytosolic DNA can directly activate the JAK1-STAT1 signaling or not. And the role of STING is also unclear in this response. In the present study, we found that dsDNA directly triggered the JAK1-STAT1 signaling by inducing phosphorylation of the Lyn kinase. Moreover, this response is not dependent on type I IFN receptors. Interestingly, STING could inhibit dsDNA-triggered activation of JAK1-STAT1 signaling by inducing SHP-1 and SHP-2 phosphorylation. In addition, compared with normal B cells, the expression of STING was significantly lower and the phosphorylation level of JAK1 was significantly higher in B cells from MRL/lpr lupus-prone mice, highlighting the close association between STING low-expression and JAK1-STAT1 signaling activation in B cells in autoimmune diseases. Our data provide a molecular insight into the novel role of STING in dsDNA-mediated inflammatory disorders. © The Korean Society for Molecular and Cellular Biology. All rights reserved.

Loading Jiangsu Key Laboratory of Molecular Medicine collaborators
Loading Jiangsu Key Laboratory of Molecular Medicine collaborators