Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement

Nanjing, China

Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement

Nanjing, China

Time filter

Source Type

Zhou R.,Jiangsu Academy of Agricultural Sciences | Zhou R.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Zhou R.,Nanjing Agricultural University | Yu X.,Nanjing Agricultural University | And 11 more authors.
BMC Plant Biology | Year: 2017

Background: Abiotic stresses due to environmental factors could adversely affect the growth and development of crops. Among the abiotic stresses, drought and heat stress are two critical threats to crop growth and sustainable agriculture worldwide. Considering global climate change, incidence of combined drought and heat stress is likely to increase. The aim of this study was to shed light on plant growth performance and leaf physiology of three tomatoes cultivars ('Arvento', 'LA1994' and 'LA2093') under control, drought, heat and combined stress. Results: Shoot fresh and dry weight, leaf area and relative water content of all cultivars significantly decreased under drought and combined stress as compared to control. The net photosynthesis and starch content were significantly lower under drought and combined stress than control in the three cultivars. Stomata and pore length of the three cultivars significantly decreased under drought and combined stress as compared to control. The tomato 'Arvento' was more affected by heat stress than 'LA1994' and 'LA2093' due to significant decreases in shoot dry weight, chlorophyll a and carotenoid content, starch content and NPQ (non-photochemical quenching) only in 'Arvento' under heat treatment. By comparison, the two heat-tolerant tomatoes were more affected by drought stress compared to 'Arvento' as shown by small stomatal and pore area, decreased sucrose content, ΦPSII (quantum yield of photosystem II), ETR (electron transport rate) and qL (fraction of open PSII centers) in 'LA1994' and 'LA2093'. The three cultivars showed similar response when subjected to the combination of drought and heat stress as shown by most physiological parameters, even though only 'LA1994' and 'LA2093' showed decreased Fv/Fm (maximum potential quantum efficiency of photosystem II), ΦPSII, ETR and qL under combined stress. Conclusions: The cultivars differing in heat sensitivity did not show difference in the combined stress sensitivity, indicating that selection for tomatoes with combined stress tolerance might not be correlated with the single stress tolerance. In this study, drought stress had a predominant effect on tomato over heat stress, which explained why simultaneous application of heat and drought revealed similar physiological responses to the drought stress. These results will uncover the difference and linkage between the physiological response of tomatoes to drought, heat and combined stress and be important for the selection and breeding of tolerant tomato cultivars under single and combine stress. © 2017 The Author(s).

Diao W.-P.,Jiangsu Academy of Agricultural Sciences | Diao W.-P.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Snyder J.C.,University of Kentucky | Wang S.-B.,Jiangsu Academy of Agricultural Sciences | And 4 more authors.
Frontiers in Plant Science | Year: 2016

The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. © 2016, Diao, Snyder, Wang, Liu, Pan, Guo and Wei.

Sun X.,Nanjing Agricultural University | Sun X.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Xu L.,Nanjing Agricultural University | Xu L.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | And 10 more authors.
BMC Genomics | Year: 2015

Background: Salt stress is one of the most representative abiotic stresses that severely affect plant growth and development. MicroRNAs (miRNAs) are well known for their significant involvement in plant responses to abiotic stresses. Although miRNAs implicated in salt stress response have been widely reported in numerous plant species, their regulatory roles in the adaptive response to salt stress in radish (Raphanus sativus L.), an important root vegetable crop worldwide, remain largely unknown. Results: Solexa sequencing of two sRNA libraries from NaCl-free (CK) and NaCl-treated (Na200) radish roots were performed for systematical identification of salt-responsive miRNAs and their expression profiling in radish. Totally, 136 known miRNAs (representing 43 miRNA families) and 68 potential novel miRNAs (belonging to 51 miRNA families) were identified. Of these miRNAs, 49 known and 22 novel miRNAs were differentially expressed under salt stress. Target prediction and annotation indicated that these miRNAs exerted a role by regulating specific stress-responsive genes, such as squamosa promoter binding-like proteins (SPLs), auxin response factors (ARFs), nuclear transcription factor Y (NF-Y) and superoxide dismutase [Cu-Zn] (CSD1). Further functional analysis suggested that these target genes were mainly implicated in signal perception and transduction, regulation of ion homeostasis, basic metabolic processes, secondary stress responses, as well as modulation of attenuated plant growth and development under salt stress. Additionally, the expression patterns of ten miRNAs and five corresponding target genes were validated by reverse-transcription quantitative PCR (RT-qPCR). Conclusions: With the sRNA sequencing, salt-responsive miRNAs and their target genes in radish were comprehensively identified. The results provide novel insight into complex miRNA-mediated regulatory network of salt stress response in radish, and facilitate further dissection of molecular mechanism underlying plant adaptive response to salt stress in root vegetable crops. © Sun et al.

Sun H.,Nanjing Agricultural University | Sun H.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Shi T.,Nanjing Agricultural University | Song J.,Nanjing Agricultural University | And 5 more authors.
Acta Physiologiae Plantarum | Year: 2016

The abnormal pistils widely occur in Japanese apricot (Prunus mume Sieb. et Zucc) and seriously affect the fruit production. In this study, a CCoAOMT homologue, PmCCoAOMT, was cloned in Japanese apricot and the bioinformatics software analyzed the structural characteristics. The PmCCoAOMT protein was detected to be located in the cell cytoplasm by onion transient expression experiment. Analysis of the real-time PCR data showed that PmCCoAOMT gene expressed in the prophase development of pistil and the expression level in ‘Daqiandi’ was higher than ‘Longyan.’ The expression level in ‘Longyan’ was higher than ‘Daqiandi’ in the late period development of pistil, and the expression level of perfect flower (perfect pistil) was higher than imperfect flower (pistil deformity and no pistil). Compared with the control, the over-expression of PmCCoAOMT transgenic tobacco lines showed bigger flowers, darker petals. The lignin monomer composition in transgenic tobacco lines was also measured, and the results showed that transgenic tobacco lines had a higher S (Syringyl)/G (Guaiacyl) ratio (22.3 %) than control lines (11.8 %). Also, the perfect flower buds contained more S/G ratio (92.62 %) than imperfect flower buds (83.55 %) in ‘Daqiandi.’ Our results indicated that the PmCCoAOMT gene might have function in lignin accumulation, which contributed to pistil development in Japanese apricot. © 2016, Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków.

Zhou Y.,Nanjing Agricultural University | Zhou Y.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Wu X.,Nanjing Agricultural University | Zhang Z.,Nanjing Agricultural University | Gao Z.,Nanjing Agricultural University
Biochemical and Biophysical Research Communications | Year: 2015

Variegation in flower is a special trait in ornamental peach (Prunus persica L.). To investigate the mechanism of color variegation, we used a combination of two dimensional gel electrophoresis and mass spectrometry to explore the proteomic profiles between variegated flower (VF) and red flower (RF) buds of the peach cultivar 'Sahong Tao'. More than 500 highly reproducible protein spots (P < 0.05) were detected and 72 protein spots showed a greater than two-fold difference in their values. We identified 70 proteins that may play roles in petal coloration. The mRNA levels of the corresponding genes were detected using quantitative RT-PCR. The results show that most of the proteins are involved in energy and metabolism, which provide energy and substrates. We found that LDOX, WD40, ACC, and PPO II are related to the pigment biosynthetic pathway. The activity of PPO enzyme was further validated and showed the higher with significant differences in RF compared with the VF ones. Moreover, the four UCH proteins are involved in protein fate and may be important in post-translational modifications in peach flowers. Our study is the first comparative proteomic analysis of floral variegation and will contribute to further investigations into the molecular mechanism of flower petal coloration in ornamental peach. © 2015 Elsevier Inc. All rights reserved.

Song J.,Nanjing Agricultural University | Song J.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Gao Z.,Nanjing Agricultural University | Huo X.,Nanjing Agricultural University | And 4 more authors.
Acta Physiologiae Plantarum | Year: 2015

Auxin has been widely implicated in various aspects of plant growth and development, including flower development. In order to further elucidate the role of auxin during flower development, especially on the pistil development process, auxin response factors (ARFs), an important component in auxin signalling pathway, were studied in the early flower buds of Japanese apricot (Prunus mume Sieb. et Zucc). In this study, a comprehensive overview of the ARF gene family in Japanese apricot is presented, including the chromosomal locations, phylogenetic relationships, gene structures, the domain and nuclear localization analysis. Seventeen Japanese apricot genes that encode ARF proteins (PmARFs) have been identified based on the genome sequence of Japanese apricot. Comparison of the expression of some PmARF genes between perfect and imperfect flower buds in Japanese apricot suggests that PmARFs, especially the PmARF13 and PmARF17 gene may be required for pistil development and function in Japanese apricot. These results will be useful for future functional analyses of the ARF family genes in plants. © 2015, Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków.

Sun X.,Nanjing Agricultural University | Sun X.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Xu L.,Nanjing Agricultural University | Xu L.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | And 11 more authors.
Plant Cell Reports | Year: 2016

Key message: Transcriptome-based gene expression analysis identifies many critical salt-responsive genes in radish and facilitates further dissecting the molecular mechanism underlying salt stress response. Abstract: Salt stress severely impacts plant growth and development. Radish, a moderately salt-sensitive vegetable crop, has been studied for decades towards the physiological and biochemical performances under salt stress. However, no systematic study on isolation and identification of genes involved in salt stress response has been performed in radish, and the molecular mechanism governing this process is still indistinct. Here, the RNA-Seq technique was applied to analyze the transcriptomic changes on radish roots treated with salt (200 mM NaCl) for 48 h in comparison with those cultured in normal condition. Totally 8709 differentially expressed genes (DEGs) including 3931 up- and 4778 down-regulated genes were identified. Functional annotation analysis indicated that many genes could be involved in several aspects of salt stress response including stress sensing and signal transduction, osmoregulation, ion homeostasis and ROS scavenging. The association analysis of salt-responsive genes and miRNAs exhibited that 36 miRNA–mRNA pairs had negative correlationship in expression trends. Reverse-transcription quantitative PCR (RT-qPCR) analysis revealed that the expression profiles of DEGs were in line with results from the RNA-Seq analysis. Furthermore, the putative model of DEGs and miRNA-mediated gene regulation was proposed to elucidate how radish sensed and responded to salt stress. This study represents the first comprehensive transcriptome-based gene expression profiling under salt stress in radish. The outcomes of this study could facilitate further dissecting the molecular mechanism underlying salt stress response and provide a valuable platform for further genetic improvement of salt tolerance in radish breeding programs. © 2015, Springer-Verlag Berlin Heidelberg.

Zhao D.,Yangzhou University | Zhao D.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Han C.,Yangzhou University | Zhou C.,Yangzhou University | Tao J.,Yangzhou University
International Journal of Agriculture and Biology | Year: 2015

High temperature stress has a significant impact on plant growth and development. Herbaceous peony (Paeonia lactiflora Pall.) is a very important landscape plant used in greenbelt whose growth is restrained seriously by high summer temperature, but little is known about relevant solving measures. In order to find an effective measure, this paper studied the effect of black shading net with about 60% transmittance on alleviating the thermal damage of P. lactiflora under field conditions. The results showed that P. lactiflora physiological indices were higher in shaded plants than those in sun-exposured plants especially in the late stages of higher temperature, such as chlorophyll (Chl) a, Chl b, Chl a+b, soluble sugar, soluble protein contents; whereas the exception to the trend was in Chl a/b and malondialdehyde (MDA) content. Moreover, compared with sun exposure, shade increased P. lactiflora protective enzymes activities, made mesophyll cell ultrastructures more intact, the chloroplasts more round and the grana lamellaes arrange relatively neatly, which led to enhance its photosynthesis rate (Pn) and transpiration rate (Tr). Additionally, the full-length cDNA of a heat shock protein gene (HSP70) containing 2195 bp nucleotides was obtained from P. lactiflora, and the expression analysis of PlHSP60, PlHSP70 and PlHSP90 in four developmental stages showed that shade caused PlHSP60 and PlHSP70 expression levels to rise especially in the late stages. These results indicated that shade alleviated the thermal damage of high temperature stress to P. lactiflora through scavenging reactive oxygen species, protecting cell structures, enhancing photosynthesis and the expression levels of HSP under high temperature stress, which might lay a theoretical foundation for P. lactiflora safe over summering and cultivated form in summer. © 2015 Friends Science Publishers.

Hao Z.,Yangzhou University | Wei M.,Yangzhou University | Gong S.,Yangzhou University | Zhao D.,Yangzhou University | And 3 more authors.
Genes and Genomics | Year: 2016

Herbaceous peony (Paeonia lactiflora Pall.) is easily injured by heat stress (HS), which greatly restricts its application and promotion. In this study, the thermo-tolerance of three representative P. lactiflora cultivars had been firstly assessed. ‘Zifengyu’ was identified as the thermo-tolerant cultivar with relatively lower values and smaller variations in malondialdehyde, hydrogen peroxide (H2O2) and proline contents under HS. Subsequently, their transcriptomes were sequenced by RNA sequencing (RNA-seq) technology to construct a complete database. 81,599 unigenes were obtained, and 34,940 unigenes had been annotated. Moreover, through digital gene expression analysis of thermo-tolerant ‘Zifengyu’ and moderately thermo-tolerant ‘Hongyanzhenghui’, 161 heat stress response genes had been screened involving heat shock protein genes, plant hormone signal transduction related genes, fatty acid synthesis genes, reactive oxygen species-scavenging genes and secondary metabolites related genes. And the effectively and timely response of these genes to HS could endow thermo-tolerance to ‘Zifengyu’. Among these genes, 11 key thermo-tolerant related genes whose expressions were all significantly up-regulated in ‘Zifengyu’ and ‘Hongyanzhenghui’ during development and the former possessed higher levels could be regarded as the candidate genes, including isoprene synthase gene, 2 peroxidase genes, 3-oxoacyl-acyl carrier protein reductase gene (FabG), 3 transcription factor genes (bHLH, NAC and WRKY), HSP20 and 3 HSP70. These results could provide a better understanding of heat stress response in P. lactiflora, and pave for the breeding of thermo-tolerant cultivars. © 2016 The Genetics Society of Korea and Springer-Science and Media

Zhao D.-Q.,Yangzhou University | Zhao D.-Q.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Wei M.-R.,Yangzhou University | Wei M.-R.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | And 4 more authors.
Plant Physiology and Biochemistry | Year: 2016

Herbaceous peony (Paeonia lactiflora Pall.) is particularly appreciated because of its elegant and gorgeous flower color, but little is known about the underlying mechanisms of flower coloration. In this study, three P. lactiflora cultivars 'Xuefeng', 'Fenyulou' and 'Dahonglou' with white, pink and red flower were selected as the materials. Their anatomical structures, cell sap pH and metal elements were investigated, and the colored pigment mainly distributed in palisade mesophyll was only found in 'Fenyulou' and 'Dahonglou', and their shape of epidermal cells, cell sap pH and metal elements were not the key factors deciding phenotype color. Moreover, the qualitative and quantitative analysis of flavonoids were performed, their total anthocyanin, anthoxanthin and flavonoid contents were decreased during flower development, and only anthocyanin content in 'Dahonglou' was always higher than that in 'Xuefeng' and 'Fenyulou'. Subsequently, three anthocyanin compositions were found, and peonidin 3,5-di-O-glucoside (Pn3G5G) was identified as the main anthocyanin composition. In addition, the full-length of flavonol synthase gene (FLS) was isolated with the GenBank accession number KM259902, and the expression patterns of eight flavonoid biosynthetic genes showed that only PlDFR and PlANS basically had the highest levels in 'Dahonglou' and the lowest levels in 'Xuefeng', and they basically displayed a descended trend during flower development especially PlDFR, suggesting that these two genes might play a key role in the anthocyanin biosynthesis which resulted in the shift from white to pink and red in flowers. These results would contribute to understand the underlying molecular mechanisms of flower coloration in P. lactiflora. © 2016 Elsevier Masson SAS.

Loading Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement collaborators
Loading Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement collaborators