Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement

Nanjing, China

Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement

Nanjing, China
SEARCH FILTERS
Time filter
Source Type

Zhou R.,Jiangsu Academy of Agricultural Sciences | Zhou R.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Zhou R.,Nanjing Agricultural University | Yu X.,Nanjing Agricultural University | And 11 more authors.
BMC Plant Biology | Year: 2017

Background: Abiotic stresses due to environmental factors could adversely affect the growth and development of crops. Among the abiotic stresses, drought and heat stress are two critical threats to crop growth and sustainable agriculture worldwide. Considering global climate change, incidence of combined drought and heat stress is likely to increase. The aim of this study was to shed light on plant growth performance and leaf physiology of three tomatoes cultivars ('Arvento', 'LA1994' and 'LA2093') under control, drought, heat and combined stress. Results: Shoot fresh and dry weight, leaf area and relative water content of all cultivars significantly decreased under drought and combined stress as compared to control. The net photosynthesis and starch content were significantly lower under drought and combined stress than control in the three cultivars. Stomata and pore length of the three cultivars significantly decreased under drought and combined stress as compared to control. The tomato 'Arvento' was more affected by heat stress than 'LA1994' and 'LA2093' due to significant decreases in shoot dry weight, chlorophyll a and carotenoid content, starch content and NPQ (non-photochemical quenching) only in 'Arvento' under heat treatment. By comparison, the two heat-tolerant tomatoes were more affected by drought stress compared to 'Arvento' as shown by small stomatal and pore area, decreased sucrose content, ΦPSII (quantum yield of photosystem II), ETR (electron transport rate) and qL (fraction of open PSII centers) in 'LA1994' and 'LA2093'. The three cultivars showed similar response when subjected to the combination of drought and heat stress as shown by most physiological parameters, even though only 'LA1994' and 'LA2093' showed decreased Fv/Fm (maximum potential quantum efficiency of photosystem II), ΦPSII, ETR and qL under combined stress. Conclusions: The cultivars differing in heat sensitivity did not show difference in the combined stress sensitivity, indicating that selection for tomatoes with combined stress tolerance might not be correlated with the single stress tolerance. In this study, drought stress had a predominant effect on tomato over heat stress, which explained why simultaneous application of heat and drought revealed similar physiological responses to the drought stress. These results will uncover the difference and linkage between the physiological response of tomatoes to drought, heat and combined stress and be important for the selection and breeding of tolerant tomato cultivars under single and combine stress. © 2017 The Author(s).


Wu X.,Nanjing Agricultural University | Wu X.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Gong Q.,The Administration Bureau of Sun Yat sen's Mausoleum | Ni X.,Nanjing Agricultural University | And 2 more authors.
Frontiers in Plant Science | Year: 2017

Japanese apricot (Prunus mume Sieb.et Zucc.) is an important ornamental plant in China. One of the traits of petals color variegation is attractive, but its formation mechanism is unclear. In our study, RNA-seq technology was employed to characterize the transcriptome response to the mutation of “Fuban Tiaozhi” associated with petals variegation in Japanese apricot. As a result, 4,579,040 (white-flowered, WF) and 7,269,883 (red-flowered, RF) reads were mapped to P. persica genes, while 5,006,676 (WF) and 7,907,436 (RF) were mapped to P. persica genomes. There were 960 differentially expressed genes (DEGs) identified. Gene ontology analysis showed that these genes involved in 37 functional groups including 19 biological processes, 10 cellular components and eight molecular functions. Pathway enrichment annotation demonstrated that highly ranked genes were associated with flavonoid biosynthesis, anthocyanin biosynthesis, anthocyanins transports, plant hormone signal transduction, and transcriptional factors. The expression patterns part of them were validated by qRT-PCR. We found that UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene showed differential expression pattern. The UFGT enzyme activities in RF had a significantly higher than that of WF and lower in the initial stage and increased when the red appeared in the petals, which is identical to the accumulation of anthocyanins. And we also validated the SNPs, leading to the nonsynonymous mutations, in the UFGT by Sanger sequencing which may affect the enzyme activity. In summary, our results provide molecular candidates for better understanding the mechanisms of the variegation in Japanese Apricot. © 2017 Wu, Gong, Ni, Zhou and Gao.


Sun X.,Nanjing Agricultural University | Sun X.,Huaiyin Institute of Technology | Sun X.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Wang Y.,Nanjing Agricultural University | And 10 more authors.
Frontiers in Plant Science | Year: 2017

To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS) were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops. © 2017 Sun, Wang, Xu, Li, Zhang, Luo, Jiang and Liu.


Huang W.-Y.,Jiangsu Academy of Agricultural Sciences | Huang W.-Y.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Fu L.,Jiangsu Academy of Agricultural Sciences | Fu L.,Harbin University of Commerce | And 4 more authors.
Journal of Food Science | Year: 2017

In recent years, the blueberry cultivation and processing industry developed quickly because blueberries are super-fruit with healthy function. Blueberry leaves are byproducts of the blueberry industry, which are rich in bioactive phenolics, such as quercetin (Q), hyperin (H), and chlorogenic acid (C). This study investigated protective effects of 3 phenolics (Q, H, and C) from leaves of rabbiteye blueberry Vaccinium ashei on human umbilical vein endothelial cells. The results showed that all these 3 phenolics could improve endothelial function by inhibiting oxidative damage and proinflammatory cytokines caused by tumor necrosis factor-α (TNF-α). The cell vitalities of endothelial cells pretreated with Q, H, and C were higher than those stimulated with TNF-α only. These phenolics could decrease reactive oxygen species and xanthine oxidase-1 levels and increase superoxide dismutase and heme oxygenase-1 levels in endothelial cells. They also could decrease the protein expressions of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and monocyte chemotactic protein-1 induced by TNF-α. In addition, Q, H, and C also exhibited vasodilatory effect by reducing the angiotensin I–converting enzyme (ACE) protein levels in endothelial cells. Mostly 3 phenolics exhibited bioactivities as a function of concentration, but the effects not always depended on the concentration. The antioxidant and antiinflammatory effects of Q seemed to be more pronounced than H; however, H exhibited higher cell vitalities. The results indicated that phenolics from rabbiteye blueberry leaves could be potential antioxidants, inflammation and ACE inhibitors, and rabbiteye blueberry leaves provide a new resources of phytochemicals beneficial for cardiovascular health. © 2017 Institute of Food Technologists®


Diao W.-P.,Jiangsu Academy of Agricultural Sciences | Diao W.-P.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Snyder J.C.,University of Kentucky | Wang S.-B.,Jiangsu Academy of Agricultural Sciences | And 4 more authors.
Frontiers in Plant Science | Year: 2016

The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper. © 2016, Diao, Snyder, Wang, Liu, Pan, Guo and Wei.


Sun X.,Nanjing Agricultural University | Sun X.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Xu L.,Nanjing Agricultural University | Xu L.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | And 10 more authors.
BMC Genomics | Year: 2015

Background: Salt stress is one of the most representative abiotic stresses that severely affect plant growth and development. MicroRNAs (miRNAs) are well known for their significant involvement in plant responses to abiotic stresses. Although miRNAs implicated in salt stress response have been widely reported in numerous plant species, their regulatory roles in the adaptive response to salt stress in radish (Raphanus sativus L.), an important root vegetable crop worldwide, remain largely unknown. Results: Solexa sequencing of two sRNA libraries from NaCl-free (CK) and NaCl-treated (Na200) radish roots were performed for systematical identification of salt-responsive miRNAs and their expression profiling in radish. Totally, 136 known miRNAs (representing 43 miRNA families) and 68 potential novel miRNAs (belonging to 51 miRNA families) were identified. Of these miRNAs, 49 known and 22 novel miRNAs were differentially expressed under salt stress. Target prediction and annotation indicated that these miRNAs exerted a role by regulating specific stress-responsive genes, such as squamosa promoter binding-like proteins (SPLs), auxin response factors (ARFs), nuclear transcription factor Y (NF-Y) and superoxide dismutase [Cu-Zn] (CSD1). Further functional analysis suggested that these target genes were mainly implicated in signal perception and transduction, regulation of ion homeostasis, basic metabolic processes, secondary stress responses, as well as modulation of attenuated plant growth and development under salt stress. Additionally, the expression patterns of ten miRNAs and five corresponding target genes were validated by reverse-transcription quantitative PCR (RT-qPCR). Conclusions: With the sRNA sequencing, salt-responsive miRNAs and their target genes in radish were comprehensively identified. The results provide novel insight into complex miRNA-mediated regulatory network of salt stress response in radish, and facilitate further dissection of molecular mechanism underlying plant adaptive response to salt stress in root vegetable crops. © Sun et al.


Zhou Y.,Nanjing Agricultural University | Zhou Y.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Wu X.,Nanjing Agricultural University | Zhang Z.,Nanjing Agricultural University | Gao Z.,Nanjing Agricultural University
Biochemical and Biophysical Research Communications | Year: 2015

Variegation in flower is a special trait in ornamental peach (Prunus persica L.). To investigate the mechanism of color variegation, we used a combination of two dimensional gel electrophoresis and mass spectrometry to explore the proteomic profiles between variegated flower (VF) and red flower (RF) buds of the peach cultivar 'Sahong Tao'. More than 500 highly reproducible protein spots (P < 0.05) were detected and 72 protein spots showed a greater than two-fold difference in their values. We identified 70 proteins that may play roles in petal coloration. The mRNA levels of the corresponding genes were detected using quantitative RT-PCR. The results show that most of the proteins are involved in energy and metabolism, which provide energy and substrates. We found that LDOX, WD40, ACC, and PPO II are related to the pigment biosynthetic pathway. The activity of PPO enzyme was further validated and showed the higher with significant differences in RF compared with the VF ones. Moreover, the four UCH proteins are involved in protein fate and may be important in post-translational modifications in peach flowers. Our study is the first comparative proteomic analysis of floral variegation and will contribute to further investigations into the molecular mechanism of flower petal coloration in ornamental peach. © 2015 Elsevier Inc. All rights reserved.


Zhao D.,Yangzhou University | Zhao D.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Han C.,Yangzhou University | Zhou C.,Yangzhou University | Tao J.,Yangzhou University
International Journal of Agriculture and Biology | Year: 2015

High temperature stress has a significant impact on plant growth and development. Herbaceous peony (Paeonia lactiflora Pall.) is a very important landscape plant used in greenbelt whose growth is restrained seriously by high summer temperature, but little is known about relevant solving measures. In order to find an effective measure, this paper studied the effect of black shading net with about 60% transmittance on alleviating the thermal damage of P. lactiflora under field conditions. The results showed that P. lactiflora physiological indices were higher in shaded plants than those in sun-exposured plants especially in the late stages of higher temperature, such as chlorophyll (Chl) a, Chl b, Chl a+b, soluble sugar, soluble protein contents; whereas the exception to the trend was in Chl a/b and malondialdehyde (MDA) content. Moreover, compared with sun exposure, shade increased P. lactiflora protective enzymes activities, made mesophyll cell ultrastructures more intact, the chloroplasts more round and the grana lamellaes arrange relatively neatly, which led to enhance its photosynthesis rate (Pn) and transpiration rate (Tr). Additionally, the full-length cDNA of a heat shock protein gene (HSP70) containing 2195 bp nucleotides was obtained from P. lactiflora, and the expression analysis of PlHSP60, PlHSP70 and PlHSP90 in four developmental stages showed that shade caused PlHSP60 and PlHSP70 expression levels to rise especially in the late stages. These results indicated that shade alleviated the thermal damage of high temperature stress to P. lactiflora through scavenging reactive oxygen species, protecting cell structures, enhancing photosynthesis and the expression levels of HSP under high temperature stress, which might lay a theoretical foundation for P. lactiflora safe over summering and cultivated form in summer. © 2015 Friends Science Publishers.


Hao Z.,Yangzhou University | Wei M.,Yangzhou University | Gong S.,Yangzhou University | Zhao D.,Yangzhou University | And 3 more authors.
Genes and Genomics | Year: 2016

Herbaceous peony (Paeonia lactiflora Pall.) is easily injured by heat stress (HS), which greatly restricts its application and promotion. In this study, the thermo-tolerance of three representative P. lactiflora cultivars had been firstly assessed. ‘Zifengyu’ was identified as the thermo-tolerant cultivar with relatively lower values and smaller variations in malondialdehyde, hydrogen peroxide (H2O2) and proline contents under HS. Subsequently, their transcriptomes were sequenced by RNA sequencing (RNA-seq) technology to construct a complete database. 81,599 unigenes were obtained, and 34,940 unigenes had been annotated. Moreover, through digital gene expression analysis of thermo-tolerant ‘Zifengyu’ and moderately thermo-tolerant ‘Hongyanzhenghui’, 161 heat stress response genes had been screened involving heat shock protein genes, plant hormone signal transduction related genes, fatty acid synthesis genes, reactive oxygen species-scavenging genes and secondary metabolites related genes. And the effectively and timely response of these genes to HS could endow thermo-tolerance to ‘Zifengyu’. Among these genes, 11 key thermo-tolerant related genes whose expressions were all significantly up-regulated in ‘Zifengyu’ and ‘Hongyanzhenghui’ during development and the former possessed higher levels could be regarded as the candidate genes, including isoprene synthase gene, 2 peroxidase genes, 3-oxoacyl-acyl carrier protein reductase gene (FabG), 3 transcription factor genes (bHLH, NAC and WRKY), HSP20 and 3 HSP70. These results could provide a better understanding of heat stress response in P. lactiflora, and pave for the breeding of thermo-tolerant cultivars. © 2016 The Genetics Society of Korea and Springer-Science and Media


Zhao D.-Q.,Yangzhou University | Zhao D.-Q.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | Wei M.-R.,Yangzhou University | Wei M.-R.,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement | And 4 more authors.
Plant Physiology and Biochemistry | Year: 2016

Herbaceous peony (Paeonia lactiflora Pall.) is particularly appreciated because of its elegant and gorgeous flower color, but little is known about the underlying mechanisms of flower coloration. In this study, three P. lactiflora cultivars 'Xuefeng', 'Fenyulou' and 'Dahonglou' with white, pink and red flower were selected as the materials. Their anatomical structures, cell sap pH and metal elements were investigated, and the colored pigment mainly distributed in palisade mesophyll was only found in 'Fenyulou' and 'Dahonglou', and their shape of epidermal cells, cell sap pH and metal elements were not the key factors deciding phenotype color. Moreover, the qualitative and quantitative analysis of flavonoids were performed, their total anthocyanin, anthoxanthin and flavonoid contents were decreased during flower development, and only anthocyanin content in 'Dahonglou' was always higher than that in 'Xuefeng' and 'Fenyulou'. Subsequently, three anthocyanin compositions were found, and peonidin 3,5-di-O-glucoside (Pn3G5G) was identified as the main anthocyanin composition. In addition, the full-length of flavonol synthase gene (FLS) was isolated with the GenBank accession number KM259902, and the expression patterns of eight flavonoid biosynthetic genes showed that only PlDFR and PlANS basically had the highest levels in 'Dahonglou' and the lowest levels in 'Xuefeng', and they basically displayed a descended trend during flower development especially PlDFR, suggesting that these two genes might play a key role in the anthocyanin biosynthesis which resulted in the shift from white to pink and red in flowers. These results would contribute to understand the underlying molecular mechanisms of flower coloration in P. lactiflora. © 2016 Elsevier Masson SAS.

Loading Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement collaborators
Loading Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement collaborators