Entity

Time filter

Source Type


Jiang H.,Jiangsu Engineering and Technology Research Center for Microbiology | Liu F.,Jiangsu Engineering and Technology Research Center for Microbiology | Zhang S.,Jiangsu Engineering and Technology Research Center for Microbiology | Lu L.,Jiangsu Engineering and Technology Research Center for Microbiology
Microbiology (Reading, England) | Year: 2014

P-type Ca(2+)-transporting ATPases are Ca(2+) pumps, extruding cytosolic Ca(2+) to the extracellular environment or the intracellular Ca(2+) store lumens. In budding yeast, Pmr1 (plasma membrane ATPase related), and Pmc1 (plasma membrane calcium-ATPase) cannot be deleted simultaneously for it to survive in standard medium. Here, we deleted two putative Ca(2+) pumps, designated AnPmrA and AnPmcA, from Aspergillus nidulans, and obtained the mutants ΔanpmrA and ΔanpmcA, respectively. Then, using ΔanpmrA as the starting strain, the promoter of its anpmcA was replaced with the alcA promoter to secure the mutant ΔanpmrAalcApmcA or its anpmcA was deleted completely to produce the mutant ΔanpmrAΔpmcA. Different from the case in Saccharomyces cerevisiae, double deletion of anpmrA and anpmcA was not lethal in A. nidulans. In addition, deletion of anpmrA and/or anpmcA had produced growth defects, although overexpression of AnPmc1 in ΔanpmrAalcApmcA could not restore the growth defects that resulted from the loss of AnPmrA. Moreover, we found AnPmrA was indispensable for maintenance of normal morphogenesis, especially in low-Ca(2+)/Mn(2+) environments. Thus, our findings suggest AnPmrA and AnPmcA might play important roles in growth, morphogenesis and cell wall integrity in A. nidulans in a different way from that in yeasts. © 2014 The Authors. Source


Chen J.,Jiangsu Engineering and Technology Research Center for Microbiology | Yong Y.,Jiangsu Engineering and Technology Research Center for Microbiology | Xing M.,Jiangsu Engineering and Technology Research Center for Microbiology | Gu Y.,Jiangsu Engineering and Technology Research Center for Microbiology | And 4 more authors.
Carbohydrate Polymers | Year: 2013

Mushrooms have a great potential for the production of useful bioactive metabolites. To explore the bioactive compounds from edible mushrooms for interfering with the development of macrophage-derived foam cells, which is recognized as the hallmark of early atherosclerosis, eight types of mushrooms polysaccharides had been selected to be tested. Consequently, different mushrooms polysaccharides displayed diverse component profiles. Of polysaccharides that we tested, the Pleurotus eryngii polysaccharide had the strongest inhibitory effect on lipid accumulation. Furthermore, through fractionation of DEAE-52 and Sephadex G-100, the polysaccharide from P. eryngii had been successfully purified and identified. By the analysis of IR, GC, and HPLC, the purified polysaccharide was estimated to be 30-38 kDa for the average molecular weight with the monosaccharide composition mainly composed of D-types of mannose, glucose and galactose. Findings presented in this report firstly provide direct evidence, which links the purified polysaccharide moiety with the biological function in foam-cell model. © 2013 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations