Entity

Time filter

Source Type


Wang X.,Yangzhou University | Wang X.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization | Liang G.,Jiangsu University
BioMed Research International | Year: 2014

We aimed to isolate and identify endophytic bacteria that might have efficacy against peanut bacterial wilt (BW) caused by Ralstonia solanacearum. Thirty-seven endophytic strains were isolated from healthy peanut plants in R. solanacearum-infested fields and eight showed antagonistic effects against R. solanacearum. Strain BZ6-1 with the highest antimicrobial activity was identified as Bacillus amyloliquefaciens based on morphology, biochemistry, and 16S rRNA analysis. Culture conditions of BZ6-1 were optimized using orthogonal test method and inhibitory zone diameter in dual culture plate assay reached 34.2 mm. Furthermore, main antimicrobial substances of surfactin and fengycin A homologues produced by BZ6-1 were analyzed by high performance liquid chromatography electrospray ionization tandem mass spectrometry. Finally, pot experiments were adopted to test the control efficiency of BZ6-1 against peanut BW. Disease incidence decreased significantly from 84.5% in the control to 12.1% with addition of 15 mL (108 cfu mL-1) culture broth for each seedling, suggesting the feasibility of strain BZ6-1 in the biological control of peanut plants BW. © 2014 Xiaobing Wang and Guobin Liang. Source


Huo M.,Nanjing Agricultural University | Zheng G.,Nanjing Agricultural University | Zheng G.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization | Zhou L.,Nanjing Agricultural University
Bioresource Technology | Year: 2014

Contribution rates of factors controlling sludge dewaterability during bioleaching, such as sludge pH, microbial quantity, extracellular polymeric substances (EPS), etc., were investigated in this study. Results showed that the dewaterability of bioleached sludge was jointly enhanced by the growth of Acidithiobacillus sp., the increase of Fe3+ concentration, the decreases of sludge pH, heterotrophic microorganism quantity change, and the decreases of EPS and bound water contents. Ridge regression analysis further revealed that the contribution rates of microbial quantity change, bound water content and slime EPS content on sludge dewaterability enhancement were 32.50%, 24.24%, and 22.37%, respectively, all of which are dominant factors. Therefore, the enhancement of sludge dewaterability was mainly controlled by microbial quantity change and the decrease of bound water and slime EPS contents during bioleaching. © 2014 Elsevier Ltd. Source


Wang Z.,Nanjing Agricultural University | Zheng G.,Nanjing Agricultural University | Zheng G.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization | Zhou L.,Nanjing Agricultural University | Zhou L.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization
Bioresource Technology | Year: 2015

Mechanisms responsible for the sludge dewaterability enhanced by filamentous fungi during fungal treatment of sludge were investigated in the present study. The filamentous fungus Mucor sp. GY-1, isolated from waste activated sludge, enhanced sludge dewaterability by 82.1% to achieve the lowest value of normalized sludge specific resistance to filtration (SRF), 8.18×1010m·L/kg·g-TSS. During the fungal treatment of sludge, 57.8% of slime extracellular polymeric substances (EPS) and 51.1% of polysaccharide in slime EPS were degraded, respectively, by Mucor sp. GY-1, contributing to the improvement of sludge dewaterability. Slime EPS is much more available for Mucor sp. GY-1 than either LB-EPS or TB-EPS that bound with microbial cells. In addition, filamentous fungus Mucor sp. GY-1 entrapped small sludge particles and inhibited the destruction of sludge flocs larger than 100μm, thus enhancing sludge dewaterability, during fungal treatment of sludge using Mucor sp. GY-1. © 2015 Elsevier Ltd. Source


Zhou J.,Nanjing Agricultural University | Zhou J.,Nanjing University of Technology | Zheng G.,Nanjing Agricultural University | Zheng G.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization | And 3 more authors.
PLoS ONE | Year: 2014

Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB +TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92) and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide) in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement. © 2014 Zhou et al. Source


Yu D.,Nanjing Agricultural University | Yu D.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization | Zhang F.,Nanjing Agricultural University | Zhang F.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization | And 6 more authors.
Zoologica Scripta | Year: 2016

Tomoceridae is common but among the most problematic groups of Collembola. Its position within Collembola and the relationships within the family remain obscure. This also extends to the generic division of the subfamily Tomocerinae that remains controversial. This study examines these issues by integrating both molecular and morphological evidence. Our molecular phylogeny based on rDNA sequences supports the monophyly of Tomoceridae and the sister relationship between Tomocerinae and Lepidophorellinae. Reconstructions and tree topology tests constraining monophyly did not resolve the relationships between Tomoceridae and other collembolan groups. We also examined the morphology of the first instar (primary) larvae, which has significant phylogenetic value among higher Collembola. Mapping primary chaetotaxy onto our molecular phylogeny provided further evidence for the unique position of Tomoceridae within Entomobryomorpha and Collembola. The monophyly and subfamilial classification within Tomoceridae were validated here, whereas its position among Collembola will need further studies in a broader consideration across the major collembolan orders. Within Tomocerinae, the monophyly of Pogonognathellus was demonstrated, but the status of Tomocerus and Tomocerina is still to be resolved. © 2016 The Norwegian Academy of Science and Letters. Source

Discover hidden collaborations