Time filter

Source Type

Sun Z.,Shanghai Institute of Pharmaceutical Industry | Wang H.,Ji Lin Medical College | Wang J.,Southern Medical University | Zhou L.,Southern Medical University | Yang P.,Shanghai Institute of Pharmaceutical Industry
PLoS ONE | Year: 2014

The chemical composition, anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita (MEO) grown in China were investigated. Using GC-MS analysis, the chemical composition of MEO was characterized, showing that it was mainly composed of menthol, menthone and menthy acetate. MEO exhibited potent anti-inflammatory activities in a croton oilinduced mouse ear edema model. It could also effectively inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The cytotoxic effect was assessed against four human cancer cells. MEO was found to be significantly active against human lung carcinoma SPC-A1, human leukemia K562 and human gastric cancer SGC-7901 cells, with an IC50 value of 10.89, 16.16 and 38.76 mg/ml, respectively. In addition, MEO had moderate antioxidant activity. The results of this study may provide an experimental basis for further systematic research, rational development and clinical utilization of peppermint resources. Copyright: © 2014 Sun et al.

Zhu W.,Ji Lin Medical College | Wang C.,Ji Lin Medical College | Liu L.,Ji Lin Medical College | Li Y.,Ji Lin Medical College | And 3 more authors.
Canadian Journal of Physiology and Pharmacology | Year: 2014

Fibroblast growth factor 21 (FGF-21), which is a modulator of glucose and lipid homeostasis, acts as a novel therapeutic reagent for many metabolic perturbations. However, its potential as a treatment for cardiovascular disease, especially atherosclerosis (AS) has not been fully explored. Here, we report that recombinant FGF-21 improves resistance to cell damage from oxidative stress in vitro, and from atherosclerosis in vivo. Human umbilical vein endothelial cells (HUVECs) were induced with H2O2, followed by treatment with high purity recombinant FGF-21. The results indicated that FGF-21 significantly enhanced cell viability and decreased the degree of DNA fragmentation in HUVECs, as caused byH2O2stress induction. Further studies revealed that FGF-21 inhibited H2O2-induced cell apoptosis by preventing the activation of mitogen-activated protein kinase (MAPK) signaling pathways. In an established rat model, FGF-21 dramatically improved the condition of atherosclerotic rats by decreasing serum levels of total triglyceride (TG), low density lipoprotein cholesterol (LDL-C), and total cholesterol (TC), and by increasing the serum levels of high density lipoprotein cholesterol (HDL-C). FGF-21 also has antioxidant effects in the atherosclerotic rat, such that increased levels of superoxide dismutase, reduced glutathione, and reduced malondialdehyde were observed. These data provide novel insight into the potential use of FGF-21 in the prevention and treatment of human cardiovascular diseases. © 2014, National Research Council of Canada. All rights reserved.

Zhu W.,Ji Lin Medical College | Zhang W.,Ji Lin Medical College | Wang H.,Ji Lin Medical College | Xu J.,Ji Lin Medical College | And 2 more authors.
Canadian Journal of Physiology and Pharmacology | Year: 2014

New therapeutic approaches are needed to improve the survival rate from pancreatic cancer, one of the most lethal human malignancies. In this study, JF305 cells were treated with microwaves at doses of 2.5, 5.0, 10.0, 15.0, and 20.0 mW/cm2 for 20 min. The inhibition of JF305 cell proliferation was tested using the MTT assay. Apoptotic cells were detected with Hoechst 33258 staining and a Nucleo-Counter NC-3000. The expression of apoptosis-related proteins was examined with Western blot. The results showed that microwaves inhibited the growth of JF305 cells in a dose-dependent manner, and caused morphological changes in apoptotic body formation. The percentages of apoptosis detected using annexin V-fluorescein isothiocyanate (FITC) were 4.0%, 10.0%, 12.0%, and 30.0% with the dosage of microwave (0, 5.0, 10.0, and 20.0 mW/cm2), respectively. Treatment with microwaves increased the activity of caspase-9 and caspase-3, down-regulated the expression of Bcl-2, and up-regulated the expression of Bax and CytoC. In addition, the expression level of p65 was increased whereas the level of IκBα down-regulated. Those results suggest that microwaves inhibit cell growth and induce apoptosis in JF305 cells through an NF-κB-regulated mitochondria-mediated pathway.

Discover hidden collaborations