Entity

Time filter

Source Type


Sharma R.,Regional Remote Sensing Center | Chaudhry S.,Kurukshetra University | Kudrat M.,Regional Remote Sensing Center | Tiwari A.K.,Regional Remote Sensing Center | And 2 more authors.
International Journal of Ecology and Development | Year: 2012

Vegetation and landuse mapping was carried out in the Kumaun Himalayan region, covering 21,034 km2 area, with the help of multi-season AWiFS data of IRS-P6. Different vegetation and landuse categories were identified using a hybrid approach of classification including unsupervised, supervised and contextual refinement techniques. 41% of the total area was occupied by vegetation with a dominance of pine forest spread in an area of 1982.74 km 2 (23% of total forest area). SRTM DEM was used for post classification refinements. Classified map was assessed for accuracy, and an overall accuracy of 92% was obtained. Distribution of different vegetation types was also analyzed with respect to different topographic variables in the study area. Maximum area with vegetation was observed in mid elevation zone in comparison to other altitude zones. In different categories maximum distribution of forest area was under low followed by mid and higher slope categories. Southern aspect was observed with maximum forest area. © 2012 IJED. Source


Saxena R.,National Institute of Malaria Research ICMR | Das M.K.,IDVC Project Field Unit | Nagpal B.N.,National Institute of Malaria Research ICMR | Srivastava A.,National Institute of Malaria Research ICMR | And 6 more authors.
Journal of Vector Borne Diseases | Year: 2014

Background & objectives: Ranchi, the capital of Jharkhand state is endemic for malaria, particularly the Bundu Primary Health Centre (PHC) is the worst affected. Therefore, a study was initiated during 2009 using remote sensing (RS) and geographical information system (GIS) to identify risk factors responsible for high endemicity in this PHC.Methods: Bundu and Angara in Ranchi district were identified as high and low malaria endemic PHCs based on epidemiological data of three years (2007–09). The habitation, streams, other water body, landform, PHC and village boundary thematic maps were prepared using IRS-P6/LISS III-IV imageries and macro level breeding sites were identified. Digital elevation model (DEM) of the PHCs was generated using Cartosat Stereo Pair images and from DEM, slope map was derived to calculate flat area. From slope, aspect map was derived to indicate direction of water flow. Length of perennial streams, area under rocky terrain and buffer zones of 250, 500 and 750 m were constructed around streams. High resolution remote sensing imageries were used to identify micro level breeding sites. Based on macro-micro breeding sites, six villages from each PHC were selected randomly having combination of different parameters representing all ecotypes. Entomological data were collected during 2010–11 in pre- and post-monsoon seasons following standard techniques and analyzed statistically. Differential analysis was attempted to comprehend socioeconomic and other determinants associated with malaria transmission.Results: The study identified eight risk factors responsible for higher malaria endemicity in Bundu in comparison to Angara PHC based on ecological, entomological, socioeconomic and other local parameters.Conclusion: Focused interventions in integrated vector management (IVM) mode are required to be carried out in the district for better management and control of disease. © 2014 Malaria Research Center. All Rights reserved. Source


Saxena R.,National Institute of Malaria Research ICMR | Nagpal B.N.,National Institute of Malaria Research ICMR | Das M.K.,IDVC Project Field Unit Under National Institute of Malaria Research | Srivastava A.,National Institute of Malaria Research ICMR | And 4 more authors.
Indian Journal of Medical Research | Year: 2012

Background & objectives: The presence of efficient malaria vectors namely Anopeles culicifacies, An. fluviatilis and An. annularis (Diptera: Culicidae), rapid industrialization causing large influx of population and poor health infrastructure are some of the factors that make malaria an important public health problem in Ranchi, the capital of Jharkhand State, India. A geographical information system (GIS) based retrospective study using spatial statistical tools was initiated in 328 subcentres of 14 primary health centres (PHCs) of the district using malaria epidemiological data of three years (2007-2009) to identify spatial distribution pattern of Plasmodium vivax (Pv) and Plasmodium falciparum (Pf) occurrence, delineation of hot spots and to map directional distribution trend of Pf spread to help formulate evidence-based policy and to prioritize control during 2011. Methods: Spatial statistics tools like Global Moran's I index, Getis-Ord Gi* and Standard Deviational Ellipse were used in GIS domain for analysis. Results: Spatial distribution pattern of Pv occurrence was found random while Pf distribution was significantly clustered. During 2007-2009, the number of subcentres under Pf hot spot category exhibited downward trend while high Pf risk subcentres exhibited upward trend. One consistent Pf hot spot consisting of five subcentres was identified in Silli PHC. During 2009, one Pf hot spot consisting of 20 subcentres and 18 subcentres under high Pf risk category were identified in Angara, Silli, Burmu and Kanke PHCs. A shifting trend in Pf spread was noticed from north-west to western direction from 2008 onwards. Interpretation & conclusions: The study recommended priority control in 20 Pf hot spot and 18 high Pf risk reporting subcentres including five consistent Pf hot spot subcentres in Angara, Silli, Burmu and Kanke PHCs during 2011 to address grave malaria situation in the district in a cost-effective manner. Source


Bijalwan A.,Allahabad University | Swamy S.L.,Indira Gandhi Agricultural University | Sharma C.M.,Hemwati Nandan Bahuguna Garhwal University | Sharma N.K.,Jharkhand Space Application Center | Tiwari A.K.,Regional Remote Sensing Service Center
Journal of Forestry Research | Year: 2010

A study was conducted to characterize the land use, biomass and carbon status of dry tropical forest in Raipur district of Chhattisgarh, India using satellite remote sensing data and GIS techniques in the year of 2001-2002. The main forest types observed in the area are Teak forest, mixed forest, degraded forest and Sal mixed forest. The aspect and slope of the sites influenced the forest vegetation types, biomass and carbon storage in the different forests. The standing volume, above ground biomass and carbon storage varied from 35.59 to 64.31 m3·ha-1, 45.94 to 78.31 Mg·ha-1, and 22.97 to 33.27 Mg·ha-1, respectively among different forest types. The highest volumes, above ground biomass and carbon storage per hectare were found in the mixed forest and lowest in the degraded forest. The total standing carbon present in the entire study area was 78170.72 Mg in mixed forest, 81656.91 Mg in Teak forest, 7833.23 Mg in degraded forest and 7470.45 Mg in Sal mixed forest, respectively. The study shows that dry tropical forests of the studied area in Chhattisgarh are in growing stage and have strong potential for carbon sequestration. © 2010 Northeast Forestry University and Springer-Verlag Berlin Heidelberg. Source


Guha A.,Indian National Remote Sensing Centre | Singh V.K.,Jharkhand Space Application Center | Parveen R.,Jharkhand Space Application Center | Kumar K.V.,Indian National Remote Sensing Centre | And 2 more authors.
International Journal of Applied Earth Observation and Geoinformation | Year: 2012

Bauxite deposits of Jharkhand in India are resulted from the lateritization process and therefore are often associated with the laterites. In the present study, ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) image is processed to delineate bauxite rich pockets within the laterites. In this regard, spectral signatures of lateritic bauxite samples are analyzed in the laboratory with reference to the spectral features of gibbsite (main mineral constituent of bauxite) and goethite (main mineral constituent of laterite) in VNIR-SWIR (visible-near infrared and short wave infrared) electromagnetic domain. The analysis of spectral signatures of lateritic bauxite samples helps in understanding the differences in the spectral features of bauxites and laterites. Based on these differences; ASTER data based relative band depth and simple ratio images are derived for spatial mapping of the bauxites developed within the lateritic province. In order to integrate the complementary information of different index image, an index based principal component (IPC) image is derived to incorporate the correlative information of these indices to delineate bauxite rich pockets. The occurrences of bauxite rich pockets derived from density sliced IPC image are further delimited by the topographic controls as it has been observed that the major bauxite occurrences of the area are controlled by slope and altitude. In addition to above, IPC image is draped over the digital elevation model (DEM) to illustrate how bauxite rich pockets are distributed with reference to the topographic variability of the terrain. Bauxite rich pockets delineated in the IPC image are also validated based on the known mine occurrences and existing geological map of the bauxite. It is also conceptually validated based on the spectral similarity of the bauxite pixels delineated in the IPC image with the ASTER convolved laboratory spectra of bauxite samples. © 2012 Elsevier B.V. Source

Discover hidden collaborations