Time filter

Source Type

Waltham, MA, United States

Detection of corrosion and other defects in piping is needed to prevent catastrophic pipeline failure. Sensors, systems and methods are provided to enable detection of such defects. These apparatus and methods are configured to characterize pipe protected by insulation and conductive weather protection. The sensors may utilize inductive and/or solid state sensing element arrays operated in a magnetic field generated in part by a drive winding of the sensor. Multiple excitation frequencies are used to generate the magnetic field and record corresponding sensing element responses. Relatively high excitation frequencies may be used to estimate the properties of the weather protection and sensor lift-off while lower frequencies may be used to detect internal and external pipe damage. Linear arrays may be moved to generate damage images of the pipe providing size and location information for defects. Two dimensional sensor arrays may be used to provide imaging without moving the sensor.

JENTEK Sensors, Inc. | Date: 2014-08-11

A substantially planar eddy-current sensor having durability enhancing pillars in an active region is provided. The pillars are distributed and sized so as to have limited effect on the sensors performance. When the sensor is mounted on a component such that the sensor experiences forces on a top and bottom surface, the pillars bear the load reducing the load bore by the active elements (e.g., drive winding, sense elements). A sensor with redundant drive windings and/or redundant sense elements is disclosed. The redundant elements may be connected to separate electronics. Another aspect relates to providing a reference transformer for calibration of a sensor. The secondary windings of the reference transformer are connected in series with the sense elements of the sensor to be calibrated. Transimpedance measurements are made when the drive winding of the reference transformer is excited. The measurements are used to correct transimpedance measurements made when the drive winding of the sensor is excited. A system having an impedance analyzer and a plurality of multiplexing units is disclosed for monitoring a plurality of sensor. Each multiplexing units directs an excitation signal to the drive winding of a respective sensor and returns, serially, the sense element responses back to the impedance analyzer. The system coordinates the excitation of each sensor and return of the sensor response to share a serial network. The multiplexing units may have a reference transformer for calibration of their respective sensors. Optical communication may be used.

JENTEK Sensors, Inc. | Date: 2011-09-28

Magnetic field sensor probes are disclosed which comprise primary or drive windings having a plurality of current carrying segments. The relative magnitude and direction of current in each segment are adjusted so that the resulting interrogating magnetic field follows a desired spatial distribution. By changing the current in each segment, more than one spatial distribution for the magnetic field can be imposed within the same sensor footprint. Example envelopes for the current distributions approximate a sinusoid in Cartesian coordinates or a first-order Bessel function in polar coordinates. One or more sensing elements are used to determine the response of a test material to the magnetic field. These sense elements can be configured into linear or circumferential arrays.

JENTEK Sensors, Inc. | Date: 2013-03-29

A system and method for measuring load and an additional property using a sensor gasket embedded between two components. The sensor gasket may include a sensor layer and a conductive layer. A gap between the sensor layer and conductive layer may be filled with a load sensitive material. The thickness of the load sensitive material varies with the load applied to the two components between which the sensor gasket sits. The sensor operates in a first mode to obtain a sensor measurement that depends on the distance between the sensor layer and conductive layer. The sensor measurement then used to estimate the applied load. The sensor operates in a second mode to estimate a property of one or both of the components. The property of interest may be cracking, material loss due to corrosion, temperature, or another property of the component.

JENTEK Sensors, Inc. | Date: 2015-02-19

The condition of internal or hidden material layers or interfaces is monitored and used for control of a process that changes a condition of a material system. The material system has multiple component materials, such as layers or embedded constituents, or can be represented with multiple layers to model spatial distributions in the material properties. The material condition changes as a result of a process performed on the material, such as by cold working, or from functional operation. Sensors placed proximate to the test material surface or embedded between material layers are used to monitor a material property using magnetic, electric, or thermal interrogation fields. The sensor responses are converted into states of the material condition, such as temperature or residual stress, typically with a precomputed database of sensor responses. The sensor responses can also be used to determine properties of the test material, such as electrical conductivity or magnetic permeability, prior to conversion to the material state. The states are used to support control decisions that control the process or operation causing the material condition to change.

Discover hidden collaborations