Jardim Botanico do Rio de Janeiro JBRJ

Rio de Janeiro, Brazil

Jardim Botanico do Rio de Janeiro JBRJ

Rio de Janeiro, Brazil
SEARCH FILTERS
Time filter
Source Type

Garibaldi L.A.,CONICET | Carvalheiro L.G.,University of Brasilia | Carvalheiro L.G.,University of Lisbon | Carvalheiro L.G.,Naturalis Biodiversity Center | And 33 more authors.
Science | Year: 2016

Ecological intensification, or the improvement of crop yield through enhancement of biodiversity, may be a sustainable pathway toward greater food supplies. Such sustainable increases may be especially important for the 2 billion people reliant on small farms, many of which are undernourished, yet we know little about the efficacy of this approach. Using a coordinated protocol across regions and crops, we quantify to what degree enhancing pollinator density and richness can improve yields on 344 fields from 33 pollinator-dependent crop systems in small and large farms from Africa, Asia, and Latin America. For fields less than 2 hectares, we found that yield gaps could be closed by a median of 24% through higher flower-visitor density. For larger fields, such benefits only occurred at high flower-visitor richness.Worldwide, our study demonstrates that ecological intensification can create synchronous biodiversity and yield outcomes.


PubMed | National University of Colombia, Federal University of Sergipe, University of Brasilia, Brawijaya University and 24 more.
Type: Journal Article | Journal: Science (New York, N.Y.) | Year: 2016

Ecological intensification, or the improvement of crop yield through enhancement of biodiversity, may be a sustainable pathway toward greater food supplies. Such sustainable increases may be especially important for the 2 billion people reliant on small farms, many of which are undernourished, yet we know little about the efficacy of this approach. Using a coordinated protocol across regions and crops, we quantify to what degree enhancing pollinator density and richness can improve yields on 344 fields from 33 pollinator-dependent crop systems in small and large farms from Africa, Asia, and Latin America. For fields less than 2 hectares, we found that yield gaps could be closed by a median of 24% through higher flower-visitor density. For larger fields, such benefits only occurred at high flower-visitor richness. Worldwide, our study demonstrates that ecological intensification can create synchronous biodiversity and yield outcomes.


Rodrigues A.R.P.,Centro Federal Of Educacao Tecnologica Celso Suckow Da Fonseca | Forzza R.C.,Jardim Botanico do Rio de Janeiro JBRJ | Andrade A.C.S.,Jardim Botanico do Rio de Janeiro JBRJ
Botanical Journal of the Linnean Society | Year: 2014

The germination requirements and the basis of the optimal water content before and after cryopreservation were studied for ten endangered Brazilian species of Bromeliaceae. Constant and alternating temperature regimes were used to determine the best conditions for seed germination. The relationship between seed water content and relative humidity was evaluated using water sorption isotherms at 15°C. Seeds were cryostored at four water contents (3, 5, 7 and 9%) and three storage periods (0, 180 and 365 days), and loss in viability and vigour were estimated. Fresh seeds of all species showed maximum germination in <30 days at temperatures between 20 and 30°C, indicating the absence of a physical/morphological dormancy. A sigmoidal relationship between seed water content and relative humidity was observed with no apparent differences in sorption characteristics among the species. The optimum water content for cryopreservation of most of these species was c. 7%. Ultra-drying (3% seed water content) had a detrimental effect on seed viability and vigour. Our experiments suggested orthodox storage behaviour for all species of Bromeliaceae examined as they are able to survive desiccation and freezing. This study has shown the feasibility of ex situ conservation in seed cryobanks of endangered bromeliads from the Brazilian Atlantic Forest to support future reintroduction of these species in nature. © 2014 The Linnean Society of London.


Bruce T.,Federal University of Rio de Janeiro | Meirelles P.M.,Federal University of Rio de Janeiro | Garcia G.,Federal University of Rio de Janeiro | Paranhos R.,Federal University of Rio de Janeiro | And 12 more authors.
PLoS ONE | Year: 2012

The health of the coral reefs of the Abrolhos Bank (southwestern Atlantic) was characterized with a holistic approach using measurements of four ecosystem components: (i) inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv) microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California) were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste) and one legally protected but poorly enforced coastal reef (the "paper park" of Timbebas Reef). The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes) showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic microbial pathogens. © 2012 Bruce et al.


Wolowski M.,University of Campinas | Nunes C.E.P.,University of Campinas | Amorim F.W.,São Paulo State University | Vizentin-Bugoni J.,University of Campinas | And 4 more authors.
Oecologia Australis | Year: 2016

Tropical high-altitude vegetation is unique due to susceptibility to severe weather conditions in relation to lower formations, and by the peculiarity of its flora with many relictual components. Studies on plant-pollinator interactions in high-altitude rocky outcrops and forests of the Atlantic Forest are scarce, but compilation of information allows us to identify some patterns: low frequency of visits, high floral longevity and generalized pollination system. In tropical mountain ecosystems, the degree of generalization of pollination systems in functional (pollinator groups) and ecological (number of species) terms tends to be high, mainly due to the over-representation of certain plant taxa (e.g., Asteraceae in rocky outcrops and Fabaceae, Myrtaceae, Rubiaceae and Sapindaceae in montane forests). Generalized pollination systems and autogamy may be advantageous for tropical high-altitude plants due to the more severe weather conditions (e.g., low temperature), which decrease abundance and limit the activity of pollinators, resulting in lower visitation frequency. Nevertheless, some well represented groups in forests, such as orchids and plants pollinated by hummingbirds and bats, exemplify cases of higher functional specialization, as well as plants with poricidal anthers pollinated by bees in the high-altitude grasslands. However, in rocky outcrops, for some functional groups of pollinators (e.g., hummingbirds, bats, beetles and hawkmoths), the availability of resources does not allow the maintenance of all species throughout the year, favoring possible local or altitudinal migrations. Thus, rocky outcrops and high-altitude forests constitute a unit in the sense of sustaining the pollinator community. Indeed rocky outcrops and high-altitude forests share an evolutionary history at the regional scale since they passed through similar events of expansion and retraction in response to climate changes in the Quaternary. This could explain the complementarity between the two types of vegetation in the use of floral resources by pollinators. Besides the associations identified here, the ecology and evolution of plant-pollinator interactions in high-altitude vegetation of the Atlantic Forest remain poorly understood, making urgent the development of an integrative research program, as well as projects on issues related to climate change and biodiversity conservation. © 2016, Universidade Federal do Rio de Janeiro (UFRJ). All rights reserved.

Loading Jardim Botanico do Rio de Janeiro JBRJ collaborators
Loading Jardim Botanico do Rio de Janeiro JBRJ collaborators