Japan Science and Technology Corporation

Saitama, Japan

Japan Science and Technology Corporation

Saitama, Japan

Time filter

Source Type

Yamaguchi H.,Kyoto University | Maruyama T.,Osaka Bioscience Institute | Urade Y.,Osaka Bioscience Institute | Urade Y.,University of Tsukuba | And 2 more authors.
eLife | Year: 2014

Apoptosis is coupled with recruitment of macrophages for engulfment of dead cells, and with compensatory proliferation of neighboring cells. Yet, this death process is silent, and it does not cause inflammation. The molecular mechanisms underlying anti-inflammatory nature of the apoptotic process remains poorly understood. In this study, we found that the culture supernatant of apoptotic cells activated the macrophages to express anti-inflammatory genes such as Nr4a and Thbs1. A high level of AMP accumulated in the apoptotic cell supernatant in a Pannexin1-dependent manner. A nucleotidase inhibitor and A2a adenosine receptor antagonist inhibited the apoptotic supernatant-induced gene expression, suggesting AMP was metabolized to adenosine by an ecto-5'-nucleotidase expressed on macrophages, to activate the macrophage A2a adenosine receptor. Intraperitoneal injection of zymosan into Adora2a- or Panx1-deficient mice produced high, sustained levels of inflammatory mediators in the peritoneal lavage. These results indicated that AMP from apoptotic cells suppresses inflammation as a 'calm down' signal. © Yamaguchi et al.

Coupe B.,Saban Research Institute | Ishii Y.,Saban Research Institute | Dietrich M.O.,Yale University | Dietrich M.O.,Federal University of Rio Grande do Sul | And 6 more authors.
Cell Metabolism | Year: 2012

The hypothalamic melanocortin system, which includes neurons that produce pro-opiomelanocortin (POMC)-derived peptides, is a major negative regulator of energy balance. POMC neurons begin to acquire their unique properties during neonatal life. The formation of functional neural systems requires massive cytoplasmic remodeling that may involve autophagy, an important intracellular mechanism for the degradation of damaged proteins and organelles. Here we investigated the functional and structural effects of the deletion of an essential autophagy gene, Atg7, in POMC neurons. Lack of Atg7 in POMC neurons caused higher postweaning body weight, increased adiposity, and glucose intolerance. These metabolic impairments were associated with an age-dependent accumulation of ubiquitin/p62-positive aggregates in the hypothalamus and a disruption in the maturation of POMC-containing axonal projections. Together, these data provide direct genetic evidence that Atg7 in POMC neurons is required for normal metabolic regulation and neural development, and they implicate hypothalamic autophagy deficiency in the pathogenesis of obesity. © 2012 Elsevier Inc.

Komatsu M.,Tokyo Metropolitan Institute of Medical Science | Komatsu M.,Japan Science and Technology Corporation | Ichimura Y.,Juntendo University
FEBS Letters | Year: 2010

Autophagy is a highly conserved bulk protein degradation pathway responsible for the turnover of long-lived proteins, disposal of damaged organelles, and clearance of aggregate-prone proteins. Thus, inactivation of autophagy results in cytoplasmic protein inclusions, which are composed of misfolded proteins and excess accumulation of deformed organelles, leading to liver injury, diabetes, myopathy, and neurodegeneration. Although autophagy has been considered non-selective, growing lines of evidence indicate the selectivity of autophagy in sorting vacuolar enzymes and in the removal of aggregate-prone proteins, unwanted organelles and microbes. Such selectivity by autophagy enables diverse cellular regulations, similar to the ubiquitin-proteasome pathway. In this review, we introduce the selective turnover of the ubiquitin- and LC3-binding protein 'p62' through autophagy and discuss its physiological significance. © 2010 Federation of European Biochemical Societies.

Toda S.,Kyoto University | Hanayama R.,Kyoto University | Nagata S.,Kyoto University | Nagata S.,Japan Science and Technology Corporation
Molecular and Cellular Biology | Year: 2012

Apoptotic cells expose phosphatidylserine on their surface as an "eat me" signal, and macrophages respond by engulfing them. Although several molecules that specifically bind phosphatidylserine have been identified, the molecular mechanism that triggers engulfment remains elusive. Here, using a mouse pro-B cell line, Ba/F3, that grows in suspension, we reconstituted the engulfment of apoptotic cells. The parental Ba/F3 cells did not engulf apoptotic cells. Ba/F3 transformants expressing T cell immunoglobulin- and mucin-domain-containing molecule 4 (Tim4), a type I membrane protein that specifically binds phosphatidylserine, efficiently bound apoptotic cells in a phosphatidylserine-dependent manner but did not engulf them. However, Ba/F3 transformants expressing both Tim4 and the integrin α vβ 3 complex bound to and engulfed apoptotic cells in the presence of milk fat globule epidermal growth factor factor VIII (MFG-E8), a secreted protein that can bind phosphatidylserine and integrin α vβ 3. These results indicate that the engulfment of apoptotic cells proceeds in two steps: Tim4 tethers apoptotic cells, and the integrin α vβ 3 complex mediates engulfment in coordination with MFG-E8. A similar two-step engulfment of apoptotic cells was observed with mouse resident peritoneal macrophages. Furthermore, the Tim4/integrin-mediated engulfment by the Ba/F3 cells was enhanced in cells expressing Rac1 and Rab5, suggesting that this system well reproduces the engulfment of apoptotic cells by macrophages. © 2012, American Society for Microbiology.

Nagata S.,Kyoto University | Nagata S.,Japan Science and Technology Corporation | Hanayama R.,Kyoto University | Hanayama R.,Japan Science and Technology Corporation | And 2 more authors.
Cell | Year: 2010

To maintain organismal homeostasis, phagocytes engulf dead cells, which are recognized as dead by virtue of a characteristic "eat me" signal exposed on their surface. The dead cells are then transferred to lysosomes, where their cellular components are degraded for reuse. Inefficient engulfment of dead cells activates the immune system, causing disease such as systemic lupus erythematosus, and if the DNA of the dead cells is not properly degraded, the innate immune response becomes activated, leading to severe anemia and chronic arthritis. Here, we discuss how the endogenous components of dead cells activate the immune system through both extracellular and intracellular pathways. © 2010 Elsevier Inc. All rights reserved.

Toda S.,Kyoto University | Segawa K.,Kyoto University | Nagata S.,Kyoto University | Nagata S.,Japan Science and Technology Corporation
Blood | Year: 2014

Definitive erythropoiesis takes place at erythroblastic islands, where erythroblasts proliferate and differentiate in association with central macrophages. At the final stage of erythropoiesis, pyrenocytes (nuclei surrounded by plasma membranes) are excluded from erythroblasts, expose phosphatidylserine (PtdSer), and are engulfed by the macrophages in a PtdSer-dependent manner. However, the molecular mechanism(s) involved in the engulfment of pyrenocytes are incompletely understood. Here, we constructed an in vitro assay system for the enucleation and engulfment of pyrenocytes using a methylcellulose-based culture. As reported previously, erythroblasts were bound to macrophages via interactions between integrin- α4β1 on erythroblasts and Vcam1 on macrophages. After enucleation, the resulting pyrenocytes exhibited a reduced affinity for Vcam1 that correlated with the presence of inactive integrin- α4β1 complexes. The pyrenocytes were then engulfed by the macrophages via a MerTK-protein S-dependent mechanism. Protein S appeared to function as a bridge between the pyrenocytes and macrophages by binding to PtdSer on the pyrenocytes and MerTK on the macrophages. Normally, NIH3T3 cells do not engulf pyrenocytes, but when they were transformed with MerTK, they efficiently engulfed pyrenocytes in the presence of protein S. These results suggest that macrophages use similar mechanisms to engulf both pyrenocytes and apoptotic cells. © 2014 by The American Society of Hematology.

Kawane K.,Kyoto University | Motani K.,Kyoto University | Nagata S.,Kyoto University | Nagata S.,Japan Science and Technology Corporation
Cold Spring Harbor Perspectives in Biology | Year: 2014

DNA is one of the most essential molecules in organisms, containing all the information necessary for organisms to live. It replicates and provides a mechanism for heredity and evolution. Various events cause the degradation of DNA into nucleotides. DNA also has a darker side that has only recently been recognized;DNAthat is not properly degraded causes various diseases. In this review, we discuss four deoxyribonucleases that function in the nucleus, cytosol, and lysosomes, and how undigested DNA causes such diseases as cancer, cataract, and autoinflammation. Studies on the biochemical and physiological functions of deoxyribonucleases should continue to increase our understanding of cellular functions and human diseases. © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

Segawa K.,Kyoto University | Kurata S.,Kyoto University | Yanagihashi Y.,Kyoto University | Brummelkamp T.R.,Netherlands Cancer Institute | And 3 more authors.
Science | Year: 2014

Phospholipids are asymmetrically distributed in the plasma membrane. This asymmetrical distribution is disrupted during apoptosis, exposing phosphatidylserine (PtdSer) on the cell surface. Using a haploid genetic screen in human cells, we found that ATP11C (adenosine triphosphatase type 11C) and CDC50A (cell division cycle protein 50A) are required for aminophospholipid translocation from the outer to the inner plasma membrane leaflet; that is, they display flippase activity. ATP11C contained caspase recognition sites, and mutations at these sites generated caspase-resistant ATP11C without affecting its flippase activity. Cells expressing caspase-resistant ATP11C did not expose PtdSer during apoptosis and were not engulfed by macrophages, which suggests that inactivation of the flippase activity is required for apoptotic PtdSer exposure. CDC50A-deficient cells displayed PtdSer on their surface and were engulfed by macrophages, indicating that PtdSer is sufficient as an "eat me" signal.

Imao T.,Kyoto University | Nagata S.,Kyoto University | Nagata S.,Japan Science and Technology Corporation
Cell Death and Differentiation | Year: 2013

Two major apoptosis pathways, the mitochondrial and death receptor pathways, are well recognized. Here we established cell lines from the fetal thymus of Apaf-1-, Caspase-9-, or Bax/Bak-deficient mice. These cell lines were resistant to apoptosis induced by DNA-damaging agents, RNA or protein synthesis inhibitors, or stress in the endoplasmic reticulum. However, they underwent efficient apoptosis when treated with kinase inhibitors such as staurosporine and H-89, indicating that these inhibitors induce a caspase-dependent apoptosis that is different from the mitochondrial pathway. CrmA, a Caspase-8 inhibitor, did not prevent staurosporine-induced apoptosis of fetal thymic cell lines, suggesting that the death receptor pathway was also not involved in this process. The staurosporine-induced cell death was inhibited by okadaic acid, a serine/threonine phosphatase inhibitor, suggesting that dephosphorylation of a proapoptotic molecule triggered the death process, or that phosphorylation of an antiapoptotic molecule could block the process. Cells of various types (fetal thymocytes, bone marrows, thymocytes, and splenocytes), but not embryonic fibroblasts, were sensitive to the noncanonical staurosporine-induced apoptosis, suggesting that the noncanonical apoptosis pathway is tissue specific. © 2013 Macmillan Publishers Limited All rights reserved.

Collier N.,Japan National Institute of Information and Communications Technology | Collier N.,Japan Science and Technology Corporation | Doan S.,Japan National Institute of Information and Communications Technology
Bioinformatics | Year: 2012

Summary: We present a novel public health database (GENI-DB) in which news events on the topic of over 176 infectious diseases and chemicals affecting human and animal health are compiled from surveillance of the global online news media in 10 languages. News event frequency data were gathered systematically through the BioCaster public health surveillance system from July 2009 to the present and is available to download by the research community for purposes of analyzing trends in the global burden of infectious diseases. Database search can be conducted by year, country, disease and language. © The Author(s) 2012. Published by Oxford University Press.

Loading Japan Science and Technology Corporation collaborators
Loading Japan Science and Technology Corporation collaborators