Entity

Time filter

Source Type


Biju V.,Japan National Institute of Advanced Industrial Science and Technology | Biju V.,Japan Science and Technology Agency
Chemical Society Reviews | Year: 2014

As prepared nanomaterials of metals, semiconductors, polymers and carbon often need surface modifications such as ligand exchange, and chemical and bioconjugate reactions for various biosensor, bioanalytical, bioimaging, drug delivery and therapeutic applications. Such surface modifications help us to control the physico-chemical, toxicological and pharmacological properties of nanomaterials. Furthermore, introduction of various reactive functional groups on the surface of nanomaterials allows us to conjugate a spectrum of contrast agents, antibodies, peptides, ligands, drugs and genes, and construct multifunctional and hybrid nanomaterials for the targeted imaging and treatment of cancers. This tutorial review is intended to provide an introduction to newcomers about how chemical and bioconjugate reactions transform the surface of nanomaterials such as silica nanoparticles, gold nanoparticles, gold quantum clusters, semiconductor quantum dots, carbon nanotubes, fullerene and graphene, and accordingly formulate them for applications such as biosensing, bioimaging, drug and gene delivery, chemotherapy, photodynamic therapy and photothermal therapy. Nonetheless, controversial reports and our growing concerns about toxicity and pharmacokinetics of nanomaterials suggest the need for not only rigorous in vivo experiments in animal models but also novel nanomaterials for practical applications in the clinical settings. Further reading of original and review articles cited herein is necessary to buildup in-depth knowledge about the chemistry, bioconjugate chemistry and biological applications of individual nanomaterials. This journal is © The Royal Society of Chemistry. Source


Patent
Japan Science, Technology Agency and California Institute of Technology | Date: 2015-01-12

To provide a catalyst, which is formed from a perovskite oxide, for thermochemical fuel production, and a method of producing fuel using thermochemical fuel production that is capable of allowing a fuel to be produced in a thermochemical manner. Provided is a catalyst for thermochemical fuel production, which is used for producing the fuel from thermal energy by using a two-step thermochemical cycle of a first temperature and a second temperature that is equal to or lower than the first temperature, wherein the catalyst is formed from a perovskite oxide having a compositional formula of AXO


Patent
Japan Science and Technology Agency | Date: 2015-04-27

The alloy fine particles of the present invention are fine particles of a solid solution alloy, in which a plurality of metal elements are mixed at the atomic level. The production method of the present invention is a method for producing alloy fine particles composed of a plurality of metal elements. This production method includes the steps of (i) preparing a solution containing ions of the plurality of metal elements and a liquid containing a reducing agent; and (ii) mixing the solution with the liquid that has been heated.


A semiconductor structure includes: a germanium layer


Patent
Japan Science and Technology Agency | Date: 2015-01-20

A plant growth regulator containing glutathione allows increasing harvest index. This provides a technique for specifying a control factor for a plant, thereby effectively controlling germination, growth, anthesis etc. of the plant.

Discover hidden collaborations