Entity

Time filter

Source Type

Ibaraki, Japan

National Institute for Materials Science is an Independent Administrative Institution and one of the largest scientific research centers in Japan. Wikipedia.


Tsai A.-P.,Tohoku University | Tsai A.-P.,Japan National Institute of Materials Science
Chemical Society Reviews | Year: 2013

The geometrical concept and structural framework of quasicrystals (QCs) were established shortly after the discovery of QCs. Specifically, the static and dynamic properties of the atoms and the electronic structures of quasiperiodic lattices were theoretically developed. Experimental studies lagged behind theoretical progress due to the lack of suitable samples. This situation changed with the discovery of several highly ordered stable QCs. Studies of these new QCs have provided new insights into the structure and properties of QCs. This article chronologically reviews the discoveries of various stable icosahedral QCs and subsequent studies that determined their structures, properties, and stabilization mechanisms. © 2013 The Royal Society of Chemistry.


Wang Z.L.,Georgia Institute of Technology | Wang Z.L.,Japan National Institute of Materials Science
Advanced Materials | Year: 2012

Sensor networks are a key technological and economic driver for global industries in the near future, with applications in health care, environmental monitoring, infrastructure monitoring, national security, and more. Developing technologies for self-powered nanosensors is vitally important. This paper gives a brief summary about recent progress in the area, describing nanogenerators that are capable of providing sustainable self-sufficient micro/nanopower sources for future sensor networks. Sensor networks are a key technological and economic driver for global industries in the near future, with applications in health care, environmental monitoring, infrastructure monitoring, national security, and more. This paper introduces a technology that is capable of providing sustainable self-sufficient micro/nano-power sources for future sensor networks. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Hu X.,Japan National Institute of Materials Science
Advanced Materials | Year: 2012

Spintronics is expected as the next-generation technology based on the novel notch of spin degree of freedom of electrons. Half-metals, a class of materials which behave as a metal in one spin direction and an insulator in the opposite spin direction, are ideal for spintronic applications. Half-metallic antiferromagnets as a subclass of half-metals are characterized further by totally compensated spin moments in a unit cell, and have the advantage of being able to generate fully spin-polarized current while exhibiting zero macroscopic magnetization. Considerable efforts have been devoted to the search for this novel material, from which we may get useful insights for prospective material exploration. Half-metals are a class of materials that behave as a metal in one spin direction and an insulator in the opposite spin direction. Half-metallic antiferromagnets as a subclass of half-metals are characterized further by totally compensated spin moments in a unit cell. Being able to generate fully spin-polarized current while exhibiting zero macroscopic magnetization, half-metallic antiferromagnets are expected as one of the most ideal materials for spintronic applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Takada K.,Japan National Institute of Materials Science
Acta Materialia | Year: 2013

The development of lithium-ion batteries has energized studies of solid-state batteries, because the non-flammability of their solid electrolytes offers a fundamental solution to safety concerns. Since poor ionic conduction in solid electrolytes is a major drawback in solid-state batteries, such studies have been focused on the enhancement of ionic conductivity. The studies have identified some high performance solid electrolytes; however, some disadvantages have remained hidden until their use in batteries. This paper reviews the development of solid electrolytes and their application to solid-state lithium batteries. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.


Kohno M.,Japan National Institute of Materials Science
Physical Review Letters | Year: 2010

The single-particle spectral properties near the Mott transition in the one-dimensional Hubbard model are investigated by using the dynamical density-matrix renormalization group method and the Bethe ansatz. The pseudogap, hole-pocket behavior, spectral-weight transfer, and upper Hubbard band are explained in terms of spinons, holons, antiholons, and doublons. The Mott transition is characterized by the emergence of a gapless mode whose dispersion relation extends up to the order of hopping t (spin exchange J) in the weak (strong) interaction regime caused by infinitesimal doping. © 2010 The American Physical Society.

Discover hidden collaborations