Ibaraki, Japan

The National Institute of Advanced Industrial Science and Technology , or AIST, is a Japanese research facility headquartered in Tokyo, and most of the workforce is located in Tsukuba Science City, Ibaraki, and in several cities throughout Japan. The institute is managed to integrate scientific and engineering knowledge to address socio-economic needs. It became a newly designed legal body of independent administrative institution in 2001, remaining under the Ministry of Economy, Trade and Industry. Wikipedia.


Time filter

Source Type

Patent
Japan National Institute of Advanced Industrial Science and Technology | Date: 2017-05-03

In an embodiment of the present invention, a wet gel includes a crosslinked silicone resin in which a silicone resin composition is solidified; a first liquid capable of dissolving the silicone resin composition; and one of a solid capable of being dissolved in the first liquid, and a second liquid such that a degree of swelling, when the crosslinked silicone resin is immersed in the second liquid, is less than a degree of swelling when the crosslinked silicone resin is immersed in n-dodecane, wherein the second liquid is capable of being mixed with the first liquid.


Patent
Shimadzu Corporation, Japan National Institute of Advanced Industrial Science and Technology | Date: 2017-05-10

In unipolar charging, a discharge current value at which charging efficiency is best and a discharge current dependency of multivalent charging differ depending on the particle size of the particles that are the object of charging. Therefore, for each particle size, a discharge voltage at which univalent charging efficiency is best and a discharge voltage at which the signal-to-noise ratio of a signal when particles of a different size are regarded as noise is best are obtained through experiment and stored in a storage unit (21). When scanning a classification voltage that is applied to a classification unit (32) of a DMA (3) to measure particle size distribution, a system controlling unit (2) acquires an optimal voltage corresponding to a particle size from the storage unit (21), and in conjunction with scanning of the classification voltage, controls a discharge power source (11) via a discharge voltage controlling unit (10) so that the discharge voltage is scanned in accordance with changes in particle size. It is thereby possible, for example, to reduce the amount of multivalent charged particles of different particle sizes that are mixed in with particles with a predetermined particle size that are extracted by classification, and to accurately determine the particle size distribution.


Patent
Shimadzu Corporation, Japan National Institute of Advanced Industrial Science and Technology | Date: 2015-06-26

In unipolar charging, a discharge current value at which charging efficiency is best and a discharge current dependency of multivalent charging differ depending on the particle size of the particles that are the object of charging. Therefore, for each particle size, a discharge voltage at which univalent charging efficiency is best and a discharge voltage at which the signal-to-noise ratio of a signal when particles of a different size are regarded as noise is best are obtained through experiment and stored in a storage unit (21). When scanning a classification voltage that is applied to a classification unit (32) of a DMA (3) to measure particle size distribution, a system controlling unit (2) acquires an optimal voltage corresponding to a particle size from the storage unit (21), and in conjunction with scanning of the classification voltage, controls a discharge power source (11) via a discharge voltage controlling unit (10) so that the discharge voltage is scanned in accordance with changes in particle size. It is thereby possible, for example, to reduce the amount of multivalent charged particles of different particle sizes that are mixed in with particles with a predetermined particle size that are extracted by classification, and to accurately determine the particle size distribution.


Patent
Japan National Institute of Advanced Industrial Science and Technology | Date: 2015-03-31

Purchase from sellers of selection is enabled to be made through simple operations. Furthermore, prospective purchase events are distributed to sellers as needed. Demands of purchase candidates are retrieved. A trade information exchange method for achieving information exchange among multiple computers included in an information communication network: causes memory means to store reception conditions of sellers received from computers of the sellers; causes the memory means to store request information received from a computer of a purchaser; makes a first selection of choosing one or more sellers having reception conditions that conform to the request information; transmits the request information that does not include purchaser contact information to the computers of the sellers selected in the first selection, subsequently receives information indicating bids, makes a second selection of choosing one or more sellers according to the bids among limited sellers offering bids that can be successfully charged; and permits communication between the computers of the sellers selected in the second selection and the computer of the purchaser.


Patent
Japan National Institute of Advanced Industrial Science and Technology | Date: 2017-05-17

The present invention provides a reciprocal-flow-type nucleic acid amplification device comprising:heaters capable of forming a denaturation temperature zone and an extension/annealing temperature zone;a fluorescence detector capable of detecting movement of a sample solution between the two temperature zones;a pair of liquid delivery mechanisms that allow the sample solution to move between the two temperature zones and that are configured to be open to atmospheric pressure when liquid delivery stops; a substrate on which the chip for nucleic acid amplification according to claim 2 can be placed; and a control mechanism that controls driving of each liquid delivery mechanism by receiving an electrical signal from the fluorescence detector relating to movement of the sample solution from the control mechanism; the device being capable of performing real-time PCR by measuring fluorescence intensity for each thermal cycle.


Patent
Sumitomo Rubber Industries Ltd., Japan National Institute of Advanced Industrial Science and Technology | Date: 2016-10-20

An object of the present invention is to provide a novel positive electrode which is produced using a rubber being an inexpensive material and is capable of enhancing a charge and discharge capacity and cyclability of a lithium-ion secondary battery, and the lithium-ion secondary battery composed of the positive electrode. In the lithium-ion secondary battery, the positive electrode comprises a current collector and an electrode layer formed on a surface of the current collector, the electrode layer comprises an active material, an electrically-conductive additive and a thermosetting resin binder subjected to thermosetting, and the active material comprises a sulfur-based positive-electrode active material prepared by heat-treating a starting material comprising a rubber and sulfur under a non-oxidizing atmosphere.


Patent
Sumitomo Electric Industries, Japan National Institute of Advanced Industrial Science and Technology | Date: 2016-11-21

An optical transmitter that includes a wavelength tunable laser diode (LD) with a narrowed emission linewidth is disclosed. The optical transmitter further includes a feedback unit and an optical attenuator. The feedback unit, receiving a portion of laser light of the wavelength tunable LD, generates feedback light by rotating the polarization of the laser light by 905, and returns thus generated feedback light in the wavelength tunable LD. The optical attenuator adjusts power of the feedback light to reduce a line wide of the laser light, or frequency noises thereof.


Patent
Sumitomo Rubber Industries Ltd., Japan National Institute of Advanced Industrial Science and Technology | Date: 2017-05-24

An object of the present invention is to provide a novel positive electrode which is produced using a rubber being an inexpensive material and is capable of enhancing a charge and discharge capacity and cyclability of a lithium-ion secondary battery, and the lithium-ion secondary battery composed of the positive electrode. In the lithium-ion secondary battery, the positive electrode comprises a current collector and an electrode layer formed on a surface of the current collector, the electrode layer comprises an active material, an electrically-conductive additive and a thermosetting resin binder subjected to thermosetting, and the active material comprises a sulfur-based positive-electrode active material prepared by heat-treating a starting material comprising a rubber and sulfur under a non-oxidizing atmosphere.


Patent
Japan Science, Technology Agency, Japan National Institute of Advanced Industrial Science and Technology | Date: 2017-02-09

The output voltage of an MRAM is increased by means of an Fe(001)/MgO(001)/Fe(001) MTJ device, which is formed by microfabrication of a sample prepared as follows: A single-crystalline MgO (001) substrate is prepared. An epitaxial Fe(001) lower electrode (a first electrode) is grown on a MgO(001) seed layer at room temperature, followed by annealing under ultrahigh vacuum. A MgO(001) barrier layer is epitaxially formed on the Fe(001) lower electrode (the first electrode) at room temperature, using a MgO electron-beam evaporation. A Fe(001) upper electrode (a second electrode) is then formed on the MgO(001) barrier layer at room temperature. This is successively followed by the deposition of a Co layer on the Fe(001) upper electrode (the second electrode). The Co layer is provided so as to increase the coercive force of the upper electrode in order to realize an antiparallel magnetization alignment.


Jansen R.,Japan National Institute of Advanced Industrial Science and Technology
Nature Materials | Year: 2012

Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age. © 2012 Macmillan Publishers Limited. All rights reserved.

Loading Japan National Institute of Advanced Industrial Science and Technology collaborators
Loading Japan National Institute of Advanced Industrial Science and Technology collaborators