Japan Monkey Center

Inuyama, Japan

Japan Monkey Center

Inuyama, Japan
SEARCH FILTERS
Time filter
Source Type

Wilson M.L.,University of Minnesota | Boesch C.,Max Planck Institute for Evolutionary Anthropology | Fruth B.,Ludwig Maximilians University of Munich | Fruth B.,Center for Research and Conservation | And 30 more authors.
Nature | Year: 2014

Observations of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) provide valuable comparative data for understanding the significance of conspecific killing. Two kinds of hypothesis have been proposed. Lethal violence is sometimes concluded to be the result of adaptive strategies, such that killers ultimately gain fitness benefits by increasing their access to resources such as food or mates. Alternatively, it could be a non-adaptive result of human impacts, such as habitat change or food provisioning. To discriminate between these hypotheses we compiled information from 18 chimpanzee communities and 4 bonobo communities studied over five decades. Our data include 152 killings (n = 58 observed, 41 inferred, and 53 suspected killings) by chimpanzees in 15 communities and one suspected killing by bonobos. We found that males were the most frequent attackers (92% of participants) and victims (73%); most killings (66%) involved intercommunity attacks; and attackers greatly outnumbered their victims (median 8:1 ratio). Variation in killing rates was unrelated to measures of human impacts. Our results are compatible with previously proposed adaptive explanations for killing by chimpanzees, whereas the human impact hypothesis is not supported. ©2014 Macmillan Publishers Limited. All rights reserved.


Hockings K.J.,Oxford Brookes University | Hockings K.J.,Center for Research in Anthropology UNL | McLennan M.R.,Oxford Brookes University | Carvalho S.,George Washington University | And 13 more authors.
Trends in Ecology and Evolution | Year: 2015

We are in a new epoch, the Anthropocene, and research into our closest living relatives, the great apes, must keep pace with the rate that our species is driving change. While a goal of many studies is to understand how great apes behave in natural contexts, the impact of human activities must increasingly be taken into account. This is both a challenge and an opportunity, which can importantly inform research in three diverse fields: cognition, human evolution, and conservation. No long-term great ape research site is wholly unaffected by human influence, but research at those that are especially affected by human activity is particularly important for ensuring that our great ape kin survive the Anthropocene. © 2015 Elsevier Ltd.


Matsumura A.,National Defense Medical College | Gunji H.,Ibaraki University | Takahashi Y.,National Defense Medical College | Nishida T.,Japan Monkey Center | Okada M.,Teikyo Heisei University
International Journal of Primatology | Year: 2010

To understand the mechanical effects of different modes of locomotion on the femoral neck of chimpanzees, we investigated the cross-sectional morphology of the femoral neck of 4 chimpanzees (Pan troglodytes schweinfurthii) collected from the Mahale Mountains, Tanzania. We performed serial computed tomography (CT) scans of the neck from the femoral head to the base of the neck perpendicular to the long axis of the neck. We measured the cortical thickness of the serial 5 cross sections of the neck region every 45° around the circumference, i. e., 8 points per section, and examined the cross-sectional properties of the mid-section. When we compared the superior and inferior parts of the cortical thickness of the femoral neck, the inferior part exhibited the greatest cortical thickness whereas the superior part had the smallest values in every specimen. Researchers have also observed such regional differences between superior and inferior cortical thicknesses in bipedal humans and other primates, although these differences are not as large in the chimpanzee as in bipedal hominini. The present study differed from the past study on hominini and chimpanzees in that the superior anterior (SA) part exhibited greater cortical thickness in chimpanzees. We believe these observations reflect the structural strengthening of parts of the chimpanzee femoral neck that is needed to accommodate the mechanical loads imposed by arboreal vertical climbing and terrestrial quadrupedal and bipedal locomotion. © Springer Science+Business Media, LLC 2010.


Langergraber K.E.,Max Planck Institute for Evolutionary Anthropology | Boesch C.,Max Planck Institute for Evolutionary Anthropology | Inoue E.,Kyoto University | Inoue-Murayama M.,Kyoto University | And 8 more authors.
Proceedings of the Royal Society B: Biological Sciences | Year: 2011

The question of whether animals possess 'cultures' or 'traditions' continues to generate widespread theoretical and empirical interest. Studies of wild chimpanzees have featured prominently in this discussion, as the dominant approach used to identify culture in wild animals was first applied to them. This procedure, the 'method of exclusion,' begins by documenting behavioural differences between groups and then infers the existence of culture by eliminating ecological explanations for their occurrence. The validity of this approach has been questioned because genetic differences between groups have not explicitly been ruled out as a factor contributing to between-group differences in behaviour. Here we investigate this issue directly by analysing genetic and behavioural data from nine groups of wild chimpanzees. We find that the overall levels of genetic and behavioural dissimilarity between groups are highly and statistically significantly correlated. Additional analyses show that only a very small number of behaviours vary between genetically similar groups, and that there is no obvious pattern as to which classes of behaviours (e.g. tool-use versus communicative) have a distribution that matches patterns of betweengroup genetic dissimilarity. These results indicate that genetic dissimilarity cannot be eliminated as playing a major role in generating group differences in chimpanzee behaviour. © 2010 The Royal Society.


Hayashi M.,Kyoto University | Ohashi G.,Japan Monkey Center | Ryu H.J.,Kyoto University
Animal Cognition | Year: 2012

Chimpanzees and bonobos are the closest living relatives of humans and diverged relatively recently in their phylogenetic history. However, a number of reports have suggested behavioral discrepancies between the two Pan species, such as more cooperative and tolerant social interaction and poorer tool-using repertoires in bonobos. Concerning hunting behavior and meat consumption, recent studies from the field have confirmed both behaviors not only in chimpanzees but also in bonobos. The present study reports an encounter by wild bonobos at Wamba with a duiker trapped in a snare. Bonobos interacted with the live duiker for about 10 min but did not eventually kill the animal. They showed fear responses when the duiker moved and exhibited behaviors related to anxiety and stress such as branch-drag displays and self-scratching. Although bonobos manipulated nearby saplings and parts of the snare, they did not use detached objects to make indirect contact with the duiker. Juveniles and adults of both sexes engaged in active interactions with the trapped duiker. Overall, bonobos' behavioral responses indicated species-specific cognitive characteristics largely different from those of chimpanzees. © 2012 Springer-Verlag.


Shintaku Y.,Kyoto University | Shintaku Y.,Japan Monkey Center | Motokawa M.,Kyoto University
Zoological Science | Year: 2016

We analyzed geographic variation in skull morphology of the large Japanese field mouse (Apodemus speciosus) and determined changes in skull morphology that occurred during the evolutionary history of A. speciosus in relation to the estimated distribution range in the last glacial maximum (LGM). We analyzed 1,416 specimens from 78 localities using geometric morphometric techniques applied to the dorsal side of the cranium and mandible. While large variations within and among the populations in Honshu, Shikoku, and Kyushu were observed, geographic patterns were not observed. Hokkaido and peripheral island populations showed shared differentiation from the Honshu, Shikoku, and Kyushu populations with a larger skull and distinct mandible shape. In addition, these two groups also differed from each other in accumulated random shape variation. Common characteristics found in Hokkaido and peripheral island populations were considered to be the ancestral states, which were retained by geographic isolation from the main islands. Random variations in Hokkaido and the peripheral island populations were formed through stochastic processes in relation to their isolation. Characteristic morphologies widely found in the populations of Honshu, Shikoku, and Kyushu were considered to be derived states that expanded after separation from the peripheral islands. Complex geomorphology and a shift in distribution range related to climate change and altitudinal distribution are suggested to have formed the complex geographic variation in this species. © 2016 Zoological Society of Japan.


Ohashi G.,Japan Monkey Center | Ohashi G.,Kyoto University | Matsuzawa T.,Kyoto University
Primates | Year: 2011

Snare injuries to chimpanzees (Pan troglodytes) have been reported at many study sites across Africa, and in some cases cause the death of the ensnared animal. However, very few snare injuries have been reported concerning the chimpanzees of Bossou, Guinea. The rarity of snare injuries in this study group warrants further consideration, given the exceptionally close proximity of the Bossou chimpanzees to human settlements and the widespread practice of snare hunting in the area. Herein we report a total of six observations of chimpanzees attempting to break and deactivate snares, successfully doing so on two of these occasions. We observed the behavior in 5 males, ranging in age from juveniles to adults. We argue that such active responses to snares must be contributing to the rarity of injuries in this group. Based on our observations, we suggest that the behavior has transmitted down the group. Our research team at Bossou continues to remove snares from the forest, but the threat of ensnarement still remains. We discuss potential ways to achieve a good balance between human subsistence activities and the conservation of chimpanzees at Bossou, which will increasingly be an area of great concern in the future. © 2010 Japan Monkey Centre and Springer.


Nakamura M.,Kyoto University | Nishida T.,Japan Monkey Center
American Journal of Primatology | Year: 2013

Among cultural behaviors of chimpanzees, the developmental processes of complex skills involved in tool use are relatively well known. However, few studies have examined the ontogeny of social customs that do not require complex skills. Thus, in this study, we describe the developmental process of the grooming hand-clasp (GHC), one of the well-known social customs of chimpanzees at Mahale. We have collected 383 cases of GHC where at least one of the participants was 15 years old or younger during 1994-2007. First performances of GHC with the mother were observed at around 4-6 years old; the earliest observed age was 4 years and 4 months old. The first performances of GHC with nonrelated females were at around age 9 years, and those with adult males at around 11 years. However, some orphans engaged in GHC earlier than nonorphans. By gradually expanding GHC partners from the mother to other females and then to males, chimpanzees increased the number of GHC partners with age. Young males were observed to perform GHC with larger numbers of partners than were young females. GHC by young chimpanzees was shorter in duration than that among adults. Overall, the ontogeny of GHC showed several dissimilarities with that of tool use and was more an extension of the development of typical grooming behavior. For example, infants did not try to perform GHC initially; instead, mothers were more active in the earliest stages. These results suggest that not all socially learned cultural behaviors are acquired in the way of learning tool use. There may be various ways of learning behavioral patterns that are performed continuously in a group and that consequently comprise culture in chimpanzees. © 2012 Wiley Periodicals, Inc.


Kagaya M.,Kyoto University | Kagaya M.,Japan Monkey Center | Ogihara N.,Kyoto University | Nakatsukasa M.,Kyoto University
International Journal of Primatology | Year: 2010

An elongated clavicle is one of the distinct features of apes and humans. It plays an important role in providing mobility as well as stability for the shoulder joints. The relative length of the clavicle is an especially important factor in limiting the range of shoulder joint excursion. It is said that among primates, Asian apes, i. e., gibbons and orang-utans, have very long clavicles. At the same time, they also have a wide upper thoracic cage, which may diminish the effective length of the clavicle. To clarify the length of the clavicle in apes, from the standpoint of the functional anatomy of the shoulder girdle, we examined clavicular length in 15 anthropoid species exhibiting various positional behaviors. The results confirm that clavicle length in Asian apes is long, and chimpanzees have a short clavicle like that of Old and New World monkeys, when scaled to body mass. The clavicular length of chimpanzees, however, is intermediate between Old World monkeys and Asian apes when scaled against thoracic width. Therefore, living apes can be grouped together, albeit just barely, by possession of a relatively long clavicle for their thoracic cage size. Interestingly, New World monkeys tend to exhibit a longer clavicle than Old World monkeys of equivalent body mass or thoracic cage width. Although it is unclear whether the ancestral condition of clavicular length in anthropoids was similar to that of living Old or New World monkeys, an elongation of clavicle was an important step toward evolution of the modern body plan of hominoids. © Springer Science+Business Media, LLC 2010.


Macho G.A.,University of Bradford | Shimizu D.,Japan Monkey Center
Journal of Human Evolution | Year: 2010

The dietary adaptations of Australopithecus anamensis are contentious, with suggestions that range from soft fruits to hard, brittle, tough, and abrasive foods. It is unlikely that all propositions are equally valid, however. Here we extend recent finite element (FE) analyses of enamel microstructure (Shimizu and Macho, 2008) to enquire about the range of loading directions (i.e., kinematics) to which A. anamensis enamel microstructure/molars could safely be subjected. The rationale underlying this study is the observation that hard brittle foods are broken down in crush, while tough foods require shear. The findings are compared with those of Pan and Gorilla. Eighteen detailed FE models of enamel microstructure were created and analysed. The results highlight the uniqueness of A. anamensis dental structure and imply that mastication in this species included a greater shear component than in Pan, as well as a wider range of loading directions; it is similar to that in Gorilla in this respect. These findings are in accord with microwear studies (Grine et al., 2006a). Unlike either of the great apes, however, enamel microstructure of A. anamensis was found to be poorly equipped to withstand loading parallel to the dentino-enamel junction; such loading regimes are associated with mastication of soft fleshy fruits. This, together with broader morphological considerations, raises doubts as to whether A. anamensis was essentially a frugivore that expanded its dietary niche as a result of fluctuations in environmental conditions, e.g., during seasonal food shortages. Instead, it is more parsimonious to conclude that the habitual diet of A. anamensis differed considerably from that of either of the extant African great apes. Crown Copyright © 2009.

Loading Japan Monkey Center collaborators
Loading Japan Monkey Center collaborators