Janusys Corporation

Kawaguchi, Japan

Janusys Corporation

Kawaguchi, Japan
SEARCH FILTERS
Time filter
Source Type

Naimuddin M.,Janusys Corporation | Naimuddin M.,Chiyoda Corporation | Kubo T.,Japan National Institute of Advanced Industrial Science and Technology | Kubo T.,Gifu University
Analytical Biochemistry | Year: 2011

We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery. © 2011 Elsevier Inc.


Biyani M.,Saitama University | Biyani M.,Saitama Small and Medium Enterprises Development Corporation | Futakami M.,Saitama University | Futakami M.,Saitama Small and Medium Enterprises Development Corporation | And 10 more authors.
International Journal of Peptides | Year: 2011

The aspartic protease cathepsin E has been shown to induce apoptosis in cancer cells under physiological conditions. Therefore, cathepsin E-activity-enhancing peptides functioning in the physiological pH range are valuable potential cancer therapeutic candidates. Here, we have used a general in vitro selection method (evolutionary rapid panning analysis system (eRAPANSY)), based on inverse substrate-function link (SF-link) selection to successfully identify cathepsin E-activity-enhancing peptide aptamers at neutral pH. A successive enrichment of peptide activators was attained in the course of selection. One such peptide activated cathepsin E up to 260, had a high affinity (KD; 300nM), and had physiological activity as demonstrated by its apoptosis-inducing reaction in cancerous cells. This method is expected to be widely applicable for the identification of protease-activity-enhancing peptide aptamers. Copyright © 2011 Madhu Biyani et al.


Hayakawa Y.,Nagahama Institute of Bio-Science and Technology | Matsuno M.,Nagahama Institute of Bio-Science and Technology | Tanaka M.,Nagahama Institute of Bio-Science and Technology | Wada A.,Nagasaki University | And 5 more authors.
Journal of Peptide Science | Year: 2015

Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd) of 58nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.


Ueno S.,Saitama University | Yoshida S.,Asubio Pharma Co. | Mondal A.,Saitama University | Nishina K.,Saitama University | And 8 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2012

G protein-coupled receptors (GPCRs) are major drug targets, and their ligands are currently being explored and developed by many pharmaceutical companies and independent researchers. Class A (rhodopsin-like) GPCRs compose a predominant GPCR family; therefore, class A GPCR ligands are in demand. Growth hormone secretagogue receptor (GHS-R) is a class A GPCR that stimulates food intake by binding to its peptide ligand, ghrelin. Therefore, antagonists of GHS-R are expected to exert antiobesity function. In this article, we describe the use of cDNA display to screen for successfully and identify an antagonistic peptide of GHS-R. The antagonistic peptide inhibited the ghrelin-induced increase in intracellular Ca2+ in vitro (IC50 = approximately 10 μM) and repressed the contraction of isolated animal stomach in response to ghrelin. Furthermore, peripheral administration of the peptide inhibited the food intake of mice. This work provides new insight into the development of antiobesity drugs and describes a method for the discovery of unique peptide ligands for class A GPCRs.


Mochizuki Y.,Saitama University | Biyani M.,University of Tokyo | Biyani M.,Japan Science and Technology Agency | Tsuji-Ueno S.,Saitama University | And 6 more authors.
ACS Combinatorial Science | Year: 2011

A rapid, easy, and robust preparation method for mRNA/cDNA display using a newly designed puromycin-linker DNA is presented. The new linker is structurally simple, easy to synthesize, and cost-effective for use in "in vitro peptide and protein selection". An introduction of RNase T1 nuclease site to the new linker facilitates the easy recovery of mRNA/cDNA displayed protein by an improvement of the efficiency of ligating the linker to mRNAs and efficient release of mRNA/cDNA displayed protein from the solid-phase (magnetic bead). For application demonstration, affinity selections were successfully performed. Furthermore, we introduced a "one-pot" preparation protocol to perform mRNA display easy. Unlike conventional approaches that require tedious and downstream multistep process including purification, this protocol will make the mRNA/cDNA display methods more practical and convenient and also facilitate the development of next-generation, high-throughput mRNA/cDNA display systems amenable to automation. © 2011 American Chemical Society.


Nemoto N.,Saitama University | Nemoto N.,Chiyoda Corporation | Nemoto N.,Janusys Corporation | Tsutsui C.,Saitama University | And 9 more authors.
Biochemical and Biophysical Research Communications | Year: 2012

Several engineered protein scaffolds have been developed recently to circumvent particular disadvantages of antibodies such as their large size and complex composition, low stability, and high production costs. We previously identified peptide aptamers containing one or two disulfide-bonds as an alternative ligand to the interleukin-6 receptor (IL-6R). Peptide aptamers (32 amino acids in length) were screened from a random peptide library by . in vitro peptide selection using the evolutionary molecular engineering method " cDNA display" . In this report, the antagonistic activity of the peptide aptamers were examined by an . in vitro competition enzyme-linked immunosorbent assay (ELISA) and an IL-6-dependent cell proliferation assay. The results revealed that a disulfide-rich peptide aptamer inhibited IL-6-dependent cell proliferation with similar efficacy to an anti-IL-6R monoclonal antibody. © 2012 Elsevier Inc.


Naimuddin M.,Janusys Corporation | Ohtsuka I.,Janusys Corporation | Kitamura K.,Janusys Corporation | Kudou M.,Janusys Corporation | Kimura S.,Janusys Corporation
Analytical Biochemistry | Year: 2013

In vitro display technologies such as ribosome display and messenger RNA (mRNA)/complementary DNA (cDNA) display are powerful methods that can generate library diversities on the order of 1010-14. However, in mRNA and cDNA display methods, the end use diversity is two orders of magnitude lower than initial diversity and is dependent on the downstream processes that act as limiting factors. We found that in our previous cDNA display protocol, the purification of protein fusions by the use of streptavidin matrices from cell-free translation mixtures had poor efficiency (∼10-15%) that seriously affected the diversity of the purified library. Here, we have investigated and optimized the protocols that provided remarkable purification efficiencies. The stalled ribosome in the mRNA-ribosome complex was found to impede this purification efficiency. Among the various conditions tested, destabilization of ribosomes by appropriate concentration of metal chelating agents in combination with an optimal temperature of 30 C were found to be crucial and effective for nearly complete isolation of protein fusions from the cell-free translation system. Thus, this protocol provided 8- to 10-fold increased efficiency of purification over the previous method and results in retaining the diversity of the library by approximately an order of magnitude - important for directed evolution. We also discuss the possible effects in the fabrication of protein chips.© 2013 Elsevier Inc. All rights reserved.


Biyani M.,Japan Advanced Institute of Science and Technology | Kawai K.,Japan Advanced Institute of Science and Technology | Kitamura K.,JANUSYS Co. | Chikae M.,Japan Advanced Institute of Science and Technology | And 6 more authors.
Biosensors and Bioelectronics | Year: 2015

Antibody-based immunosensors are relatively less accessible to a wide variety of unreachable targets, such as low-molecular-weight biomarkers that represent a rich untapped source of disease-specific diagnostic information. Here, we present a peptide aptamer-based electrochemical sensor technology called 'PEP-on-DEP' to detect less accessible target molecules, such as renin, and to improve the quality of life. Peptide-based aptamers represent a relatively smart class of affinity binders and show great promise in biosensor development. Renin is involved in the regulation of arterial blood pressure and is an emerging biomarker protein for predicting cardiovascular risk and prognosis. To our knowledge, no studies have described aptamer molecules that can be used as new potent probes for renin. Here, we describe a portable electrochemical biosensor platform based on the newly identified peptide aptamer molecules for renin. We constructed a randomized octapeptide library pool with diversified sequences and selected renin specific peptide aptamers using cDNA display technology. We identified a few peptide aptamer sequences with a K D in the μM binding affinity range for renin. Next, we grafted the selected peptide aptamers onto gold nanoparticles and detected renin in a one-step competitive assay using our originally developed DEP (Disposable Electrochemical Printed) chip and a USB powered portable potentiostat system. We successfully detected renin in as little as 300ngmL-1 using the PEP-on-DEP method. Thus, the generation and characterization of novel probes for unreachable target molecules by merging a newly identified peptide aptamer with electrochemical transduction allowed for the development of a more practical biosensor that, in principle, can be adapted to develop a portable, low-cost and mass-producible biosensor for point-of-care applications. © 2015 Elsevier B.V.


PubMed | Janusys Corporation
Type: Journal Article | Journal: Analytical biochemistry | Year: 2011

We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery.


PubMed | Japan Advanced Institute of Science and Technology, Kanazawa University, JANUSYS Co. and BioDevice Technology Ltd.
Type: | Journal: Biosensors & bioelectronics | Year: 2016

Antibody-based immunosensors are relatively less accessible to a wide variety of unreachable targets, such as low-molecular-weight biomarkers that represent a rich untapped source of disease-specific diagnostic information. Here, we present a peptide aptamer-based electrochemical sensor technology called PEP-on-DEP to detect less accessible target molecules, such as renin, and to improve the quality of life. Peptide-based aptamers represent a relatively smart class of affinity binders and show great promise in biosensor development. Renin is involved in the regulation of arterial blood pressure and is an emerging biomarker protein for predicting cardiovascular risk and prognosis. To our knowledge, no studies have described aptamer molecules that can be used as new potent probes for renin. Here, we describe a portable electrochemical biosensor platform based on the newly identified peptide aptamer molecules for renin. We constructed a randomized octapeptide library pool with diversified sequences and selected renin specific peptide aptamers using cDNA display technology. We identified a few peptide aptamer sequences with a KD in the M binding affinity range for renin. Next, we grafted the selected peptide aptamers onto gold nanoparticles and detected renin in a one-step competitive assay using our originally developed DEP (Disposable Electrochemical Printed) chip and a USB powered portable potentiostat system. We successfully detected renin in as little as 300ngmL(-1) using the PEP-on-DEP method. Thus, the generation and characterization of novel probes for unreachable target molecules by merging a newly identified peptide aptamer with electrochemical transduction allowed for the development of a more practical biosensor that, in principle, can be adapted to develop a portable, low-cost and mass-producible biosensor for point-of-care applications.

Loading Janusys Corporation collaborators
Loading Janusys Corporation collaborators