Time filter

Source Type

Kracker J.,James illen Veterans Administration Medical Center | Kearns K.,Kessler Institute for Rehabilitation | Kier F.J.,Medical College of Wisconsin | Christensen K.A.,Veterans Administration Pittsburgh Healthcare System
Clinical Gerontologist | Year: 2011

Activities can be a nonpharmacological intervention for depression in long-term care. To address the activity needs of men, 183 residents of a VA long-term care facility were surveyed about activity interests, past and present, and activity satisfaction. With a 30% return rate, residents reported 85% overall satisfaction with activities and identified television as the most preferred activity, past and present. Bingo, movies, and listening to music ranked high for current activities. Prayer, reading, and pets increased in popularity. Current satisfaction with flea markets, pool, and gardening decreased from prior levels of satisfaction. Model making and arts and crafts activities were rated poorly. Long-term care facilities may want to expand television-based activities for older men in ways that promote increased socialization and mental activity. © Taylor & Francis Group, LLC.


Zhang Y.,East Tennessee State University | Zhang Y.,PLA Fourth Military Medical University | Ma C.J.,East Tennessee State University | Wang J.M.,East Tennessee State University | And 5 more authors.
Journal of Leukocyte Biology | Year: 2012

Tim-3 and PD-1 are powerful immunoinhibitory molecules involved in immune tolerance, autoimmune responses, and antitumor or antiviral immune evasion. A current model for Tim-3 regulation during immune responses suggests a divergent function, such that Tim-3 acts synergistically with TLR signaling pathways in innate immune cells to promote inflammation, yet the same molecule terminates Th1 immunity in adaptive immune cells. To better understand how Tim-3 might be functioning in innate immune responses, we examined the kinetics of Tim-3 expression in human CD14 + M/M 4 in relation to expression of IL-12, a key cytokine in the transition of innate to adaptive immunity. Here, we show that Tim-3 is constitutively expressed on unstimulated peripheral blood CD14 + monocytes but decreases rapidly upon TLR stimulation. Conversely, IL-12 expression is low in these cells but increases rapidly in CD14 + M/M.J, in correlation with the decrease in Tim-3. Blocking Tim-3 signaling or silencing Tim-3 expression led to a significant increase in TLR-mediated IL-12 production, as well as a decrease in activation-induced up-regula-tion of the immunoinhibitor, PD-1; TNF-a production was not altered significantly, but IL-10 production was increased. These results suggest that Tim-3 has a role as a regulator of pro- and anti-inflammatory innate immune responses. © Society for Leukocyte Biology.


Frazier A.D.,East Tennessee State University | Zhang C.L.,East Tennessee State University | Ni L.,East Tennessee State University | Ma C.J.,East Tennessee State University | And 7 more authors.
Viral Immunology | Year: 2010

Chronic hepatitis C virus (HCV) infection is associated with T-cell exhaustion that is mediated through upregulation of the PD-1 negative regulatory pathway. PD-1 expression is induced by HCV core protein, which also induces upregulation of SOCS-1, a key modulator that controls the Jak/STAT pathway regulating cytokine expression. To determine whether these two negative regulatory pathways are linked during T-cell signaling, SOCS-1 expression was examined by blocking the PD-1 pathway in T cells stimulated with anti-CD3/CD28 in the presence of HCV core protein. T cells isolated from healthy subjects or HCV-infected individuals were treated with anti-PD-1 or anti-PDL-1 antibodies in the presence or absence of HCV core protein, and SOCS-1 gene expression was detected by RT-PCR or immunoblotting, while T-cell functions were assayed by flow cytometric analyses. Both PD-1 and SOCS-1 gene expression were upregulated in healthy T cells exposed to HCV core protein, and blocking the PD-1 pathway downregulated SOCS-1 gene expression in these cells. Additionally, T cells isolated from chronically HCV-infected subjects exhibited increased PD-1 and SOCS-1 expression compared to healthy subjects, and SOCS-1 expression in T cells isolated from HCV-infected subjects was also inhibited by blocking PD-1 signaling; this in turn enhanced the phosphorylation of STAT-1, and improved the impaired T-cell proliferation observed in the setting of HCV infection. These data demonstrate that PD-1 and SOCS-1 are linked in dysregulating T-cell signaling during HCV infection, and their cross-talk may coordinately inhibit T-cell signaling pathways that lead to T-cell exhaustion during chronic viral infection. © Copyright 2010, Mary Ann Liebert, Inc. 2010.


PubMed | James illen Veterans Administration Medical Center
Type: Journal Article | Journal: Viral immunology | Year: 2010

Chronic hepatitis C virus (HCV) infection is associated with T-cell exhaustion that is mediated through upregulation of the PD-1 negative regulatory pathway. PD-1 expression is induced by HCV core protein, which also induces upregulation of SOCS-1, a key modulator that controls the Jak/STAT pathway regulating cytokine expression. To determine whether these two negative regulatory pathways are linked during T-cell signaling, SOCS-1 expression was examined by blocking the PD-1 pathway in T cells stimulated with anti-CD3/CD28 in the presence of HCV core protein. T cells isolated from healthy subjects or HCV-infected individuals were treated with anti-PD-1 or anti-PDL-1 antibodies in the presence or absence of HCV core protein, and SOCS-1 gene expression was detected by RT-PCR or immunoblotting, while T-cell functions were assayed by flow cytometric analyses. Both PD-1 and SOCS-1 gene expression were upregulated in healthy T cells exposed to HCV core protein, and blocking the PD-1 pathway downregulated SOCS-1 gene expression in these cells. Additionally, T cells isolated from chronically HCV-infected subjects exhibited increased PD-1 and SOCS-1 expression compared to healthy subjects, and SOCS-1 expression in T cells isolated from HCV-infected subjects was also inhibited by blocking PD-1 signaling; this in turn enhanced the phosphorylation of STAT-1, and improved the impaired T-cell proliferation observed in the setting of HCV infection. These data demonstrate that PD-1 and SOCS-1 are linked in dysregulating T-cell signaling during HCV infection, and their cross-talk may coordinately inhibit T-cell signaling pathways that lead to T-cell exhaustion during chronic viral infection.


PubMed | James illen Veterans Administration Medical Center
Type: Journal Article | Journal: Journal of leukocyte biology | Year: 2012

Tim-3 and PD-1 are powerful immunoinhibitory molecules involved in immune tolerance, autoimmune responses, and antitumor or antiviral immune evasion. A current model for Tim-3 regulation during immune responses suggests a divergent function, such that Tim-3 acts synergistically with TLR signaling pathways in innate immune cells to promote inflammation, yet the same molecule terminates Th1 immunity in adaptive immune cells. To better understand how Tim-3 might be functioning in innate immune responses, we examined the kinetics of Tim-3 expression in human CD14+ M/M() in relation to expression of IL-12, a key cytokine in the transition of innate to adaptive immunity. Here, we show that Tim-3 is constitutively expressed on unstimulated peripheral blood CD14+ monocytes but decreases rapidly upon TLR stimulation. Conversely, IL-12 expression is low in these cells but increases rapidly in CD14+ M/M() in correlation with the decrease in Tim-3. Blocking Tim-3 signaling or silencing Tim-3 expression led to a significant increase in TLR-mediated IL-12 production, as well as a decrease in activation-induced up-regulation of the immunoinhibitor, PD-1; TNF- production was not altered significantly, but IL-10 production was increased. These results suggest that Tim-3 has a role as a regulator of pro- and anti-inflammatory innate immune responses.

Loading James illen Veterans Administration Medical Center collaborators
Loading James illen Veterans Administration Medical Center collaborators