Entity

Time filter

Source Type

Jodhpur, India

Jai Narain Vyas University also known as University of Jodhpur is situated in Jodhpur city in the Indian state of Rajasthan. Established in 1962 it took over the four colleges of Jodhpur run by the state government. Accredited with "B" grade by the NAAC, this is the only residential university in the state of Rajasthan, catering mainly to the needs of students of western Rajasthan . Since this university is in the great Indian Thar Desert, its R&D activities are centered on the heritage, society and challenges of the region. This is the western-most university of the country and imparts education and conducts research in border areas neighboring Pakistan. Wikipedia.


Saxena I.,Banasthali University | Shekhawat G.S.,Banasthali University | Shekhawat G.S.,Jai Narain Vyas University
Nitric Oxide - Biology and Chemistry | Year: 2013

Nitric oxide (NO) is recognized as a biological messenger in various tissues to regulate diverse range of physiological process including growth, development and response to abiotic and biotic factors. The NO emission from plants is known since the 1970s, and there is copious information on the multiple effects of exogenously applied NO on different physiological and biochemical processes of plants. Heavy metal toxicity is one of the major abiotic stresses leading to hazardous effects in plants and its toxicity is based on chemical and physical property. A common consequence of heavy metal toxicity is the uncontrolled and excessive accumulation of reactive oxygen species (ROS) which leads to peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Recently, an increasing number of articles have reported the effects of exogenous NO on alleviating heavy metal toxicity in plants but knowledge of physiological mechanisms of NO in alleviating heavy metal toxicity is quite limited, and some results contradict one another. Therefore, to help clarify the roles of NO in heavy metal tolerance, it is important to review and discuss the recent advances on this area of research. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in the plant cells. NO alleviates the harmfulness of the ROS, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions. This manuscript includes, the latest advances in understanding the effects of endogenous NO on heavy metal toxicity and the mechanisms and role of NO as an antioxidant as well as in protein nitration are highlighted. © 2013 Elsevier Inc. All rights reserved. Source


Photogalvanic cells (PG) are dye sensitized solution based solar power generation and storage devices. The photogalvanics of various synthetic dyes (single/mixed) and natural photo sensitizers (present in crude spinach extract) has been studied to obtain some new insights with the aim of finding relatively cheaper, cleaner and environmentally friendly photo sensitizers for further improvement in the electrical performance of PG cells. In this study, at illumination intensity 10.4 mW cm-2, the observed value of electrical output for single as well as mixed photo sensitizers is of the same order, and surprisingly very high with respect to earlier reported results. Therefore, it may be concluded that mixed photo sensitizers do not offer any significant advantage over single photo sensitizers. Therefore, I suggest a focus on single photo sensitizers, and more on natural photo sensitizers like chlorophyll present in crude spinach extract for cost-effective, eco-friendly and renewable cells. © 2014 The Royal Society of Chemistry. Source


Karwa R.,National School of Technology | Chitoshiya G.,Jai Narain Vyas University
Energy | Year: 2013

The paper presents results of an experimental study of thermo-hydraulic performance of a solar air heater with 60° v-down discrete rib roughness on the airflow side of the absorber plate along with that for a smooth duct air heater. The enhancement in the thermal efficiency due to the roughness on the absorber plate is found to be 12.5-20% depending on the airflow rate; higher enhancement is at the lower flow rate. The experimental data have been generated and utilized to validate a mathematical model, which can be utilized for design and prediction of performance of both smooth and roughened air heaters under different operating conditions. The results of a detailed thermo-hydraulic performance study of solar air heater with v-down discrete rib roughness using the mathematical model are also presented along with the effect of variation of various parameters on the performance. © 2013 Elsevier Ltd. Source


Koli P.,Jai Narain Vyas University
Applied Energy | Year: 2014

Photogalvanic cells are photoelectrochemical devices involving ions as mobile charges moving in solution through diffusion process. These cells are capable of solar power generation at low cost with inherent storage capacity. This property of photogalvanic cell needs to be exploited as this technology is cleaner and promising for application in daily life. Therefore, a photogalvanic cell consisting of Fast Green FCF as photosensitizer, Fructose as reductant and NaOH as alkaline medium has been studied with observed value of maximum potential 1083. mV, maximum photocurrent 431. μA, short-circuit current 380. μA, power at power point 138.60. μW, efficiency 1.33%, and storage capacity (as half change time) 70. min. The observed results are higher and encouraging enough for ultimate aim of development of applicable and affordable photogalvanic cells in future. © 2013 Elsevier Ltd. Source


Bhimwal M.K.,Jai Narain Vyas University | Gangotri K.M.,Jai Narain Vyas University
Energy | Year: 2011

The comparative performance of photogalvanic cells has been studied for solar energy conversion and storage by using Methyl Orange, Rose Bengal, Toluidine Blue and Brilliant Cresyl Blue as different photosensitizers with d-Xylose as reductant and Sodium Lauryl Sulphate (NaLS) as surfactant in the different systems. The photogeneration of photopotential are 890.0, 885.0, 945.0 and 940.0 mV whereas the maximum photocurrent is 625.0, 575.0, 510.0 and 480.0 μA, respectively. The short circuit current or photocurrent at equilibrium is 480.0, 460.0, 430.0 and 440.0 μA, respectively. The observed conversion efficiencies for Methyl Orange, Rose Bengal, Toluidine Blue and Brilliant Cresyl Blue with d-Xylose and Sodium Lauryl Sulphate systems are 1.6245, 1.5261, 1.4323 and 1.1057%, respectively. The fill factors 0.3244, 0.3151, 0.3120, and 0.2408 are experimentally determined at the power point of the cell where the absolute value is 1.0. The photogalvanic cells so developed can work for 160.0, 145.0, 130.0 and 140.0 min in dark if it is irradiated for 180.0, 165.0, 135.0 and 150.0 min, respectively where the percentage of storage capacity of photogalvanic cells are found 87.87%-96.29%. All observed results are the higher among the reported results so far in the literature. © 2010 Elsevier Ltd. Source

Discover hidden collaborations