Huntsville, AL, United States
Huntsville, AL, United States

Time filter

Source Type

Patent
Jacobs Inc. | Date: 2016-12-25

A controller of an internal combustion engine receives a request to activate an exhaust brake subsystem and, in response thereto, activates the exhaust braking subsystem. The controller thereafter determines that at least one parameter of the exhaust system, an intake subsystem or both compares unfavorably with at least one threshold. When the at least one parameter compares unfavorably with the at least one threshold, the controller determines that the exhaust braking subsystem has failed. In embodiments, the determination that the at least one parameter compares unfavorably with the at least one threshold comprises a determination that backpressure in the exhaust system is lower than a backpressure threshold and/or a determination that boost pressure in the intake subsystem is higher than a threshold.


Systems for actuating at least two engine comprise a valve bridge operatively connected to the at least two engine valves and having a hydraulically-actuated lost motion component. A rocker arm has a motion receiving end configured to receive valve actuation motions from a valve actuation motion source and a motion imparting end for conveying the valve actuation motions and hydraulic fluid to the lost motion component. The motion receiving end is biased toward the valve actuation motion source. A bias mechanism, supported by either the rocker arm, valve bridge or both, is configured to bias the motion receiving end of the rocker arm and the lost motion component into contact with each other. By maintaining such contact, the bias mechanism helps maintain the supply of hydraulic fluid from the rocker arm to the lost motion component.


Systems for actuating at least two engine valves comprise a valve bridge operatively connected to the at least two engine valves and having a hydraulically-actuated lost motion component. The lost motion component comprises a lost motion check valve disposed therein. A rocker arm has a motion receiving end configured to receive valve actuation motions from a valve actuation motion source and a motion imparting end for conveying the valve actuation motions and hydraulic fluid to the lost motion component. The rocker arm is in fluid communication with a hydraulic fluid supply. The systems also comprise an accumulator in fluid communication with the hydraulic fluid supply and disposed upstream of the lost motion check valve. In all embodiments, a fluid supply check valve may be disposed upstream of the accumulator and configured to prevent flow of hydraulic fluid from the accumulator back to the hydraulic fluid supply.


In an internal combustion engine, a linkage is provided between an auxiliary motion source and a main motion load path, such that motions received by the linkage from the auxiliary motion source result in provision of a first force to at least one engine valve and a second force to the main motion load path in a direction toward a main motion source. Where an automatic lash adjuster is associated with the main motion load path, the second force may be selected to aid in the control of lash adjustments made by the automatic lash adjuster. In various embodiments, the linkage may be embodied in an mechanical linkage, whereas in other embodiments, an hydraulic linkage may be employed. The linkage may be incorporated into, or otherwise cooperate, a valve bridge or a rocker arm.


Patent
Jacobs Inc. | Date: 2017-05-24

A pushrod assembly for an internal combustion engine comprises a pushrod having a first end and a second end, the first end being configured to receive valve actuation motions from a valve actuation motion source and the second end being configured to impart the valve actuation motions to a valve train component. The pushrod includes a resilient element engagement feature. The pushrod assembly includes a fixed support and a resilient element operatively connected to the resilient element engagement feature and the fixed support. The resilient element is configured to bias the pushrod, via the resilient element engagement feature, toward the valve actuation motion source. An internal combustion engine may comprise the pushrod assembly described herein. A follower assembly may be provided to maintain contact between second end of the pushrod and the valve train component.


A surgical procedure kit for inserting a medical tube according to the present invention includes: an insertion pathway formation means configured to include a medical tube provided with a hollow tube main body, a tube member including a hollow conduit having the medical tube received therein and forming a pathway into which the medical tube is to be inserted, and a support member including a support rod which is inserted into the medical tube and has stiffness greater than that of the tube member; and a push means configured to be slidable within the conduit of the tube member and push the medical tube through the conduit of the tube member.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: PETROLOGY AND GEOCHEMISTRY | Award Amount: 183.26K | Year: 2016

The chemical compound H2O, which in its liquid state is called water, when it occurs bound in minerals and other solids, influences melting, rheology and plastic behavior of the mineral or material, and the materials thermal and electrical properties. In the case where H2O is bound in minerals deep in the ocean crust, this can result in enhanced generation of magmas, hence volcanic eruptions, and changes in the plasticity, deformation of the lithosphere. In areas where magmas rise to the surface, this H2O is released and forms an important part of the global cycle of H2O. Because most of the H2O on Earth is locked up in minerals in the crust and mantle, the concentration and distribution of H2O in various mantle and lithospheric reservoirs have been inferred primarily from analyses of undegassed glasses and melt inclusions in oceanic basalts through a comparison of their H2O content with incompatible rare earth elements like Cerium. This only provides a rough estimate of the H2O content of the Earth. This research builds off the results of a pilot study and uses a novel new approach to determine how much H2O is stored in minerals in the oceanic mantle and lithosphere, the mechanisms that fractionate H2O from other geochemical tracers in mantle lithologies, and the fate of the H2O and how it impacts the electrical conductivity and rheology of the oceanic lithosphere. Broader impacts of the work include support of a faculty member at an institution in South Carolina, an EPSCoR state (i.e., a state that does not receive significant federal funding), support of a researcher whose gender is under-represented in the sciences, and student training who will get trained on cutting-edge analytical instrumentation at NASA at the Johnson Space Center in Houston, TX. Impacts also include international collaboration with Belgian and Japanese scientists and making the data accessible to the public.

Questions to be addressed by this research include seeing if H2O varies independently from lithophile elements in the lithosphere and if diffusion is responsible if decoupling is observed; looking to see if pyroxenes are typically a high-H2O, low-solidus reservoir; examine if H2O solubility in minerals under lithospheric pressures and temperatures put an upper limit on how much structurally bound H2O is held in the unaltered lithosphere; whether H2O concentrations are reflected in the H2O systematics of lithospheric samples; and whether there are systematic correlations between H2O distribution in the lithosphere and the degree of melting, depth, and lithology and metasomatic agents. To address these issues, Fourier Transform Infrared Spectroscopy (FTIR) will be used to determine the H2O concentrations in well-characterized, fresh (i.e., unaltered) peridotites and pyroxenites from a suite of locations and tectonic settings that include the Canary Islands in the Atlantic Ocean; the Kerguelen Plateau in the South Indian Ocean; the Hawaiian and Samoan Islands and the Ontong Java Plateau in the Pacific Ocean; and the Lena Trough in the Arctic Ocean. Additional geochemical indicators, such as trace element compositions of minerals and radiogenic isotopes of Sr, Hf, Nd, and Pb in minerals and rocks will be used to help determine if there is a link between process, mineralogy, and H2O content/behavior.


Grant
Agency: NSF | Branch: Continuing grant | Program: | Phase: PLANETARY ASTRONOMY | Award Amount: 325.14K | Year: 2016

Many spacecraft have gone to Mars; none has returned samples to the Earth. The only samples of material from Mars that we can study here on Earth are the Mars meteorites. Organic matter has been found in some of the Mars meteorites, but scientists cannot agree on when, where, and how the organic matter formed. The investigators will study a sample of six Mars meteorites to learn about the composition and structure of the organics. This research will provide answers on how carbon in the young Mars formed and changed with time. These answers can then be used to address questions about how organic material formed on the young Earth, which places in the Solar System can host life, and what processes lead to the formation of life. This research serves the national interest by advancing our understanding of the processes that create life in and beyond the Solar System. The investigators will give at least two lessons on this study every year though NASAs Johnson Space Centers Classroom Connection Webinars, reaching 500 - 1700 students for each lesson. These lessons are also recorded. The investigators also interact with visiting educators through tours of the laboratory facilities.


Mars meteorites are the only samples of the Martian crust currently available for laboratory analysis. This study will investigate the nature and origin of organic matter present within a suite of Mars meteorites. Although the presence of likely indigenous organic matter has been established in some Mars meteorites, scientists do not agree on when, where or how such matter formed. The answers to these questions are critical to understanding the Martian carbon cycle, the abiotic organic evolution of the early Mars (and by inference the early Earth), the identification of potentially habitable environments in the Solar System, and the processes leading to the origins of life. A selected group of six Mars meteorites will be studied systematically with the objectives of determining: [1] the molecular composition and abundance of organic phases and, where applicable, the texture and morphology of any discrete organic assemblage; and, [2] the spatial distribution of organics in relation to the underlying mineralogy. The investigators have pioneered these procedures and techniques in the analysis of extraterrestrial samples, and bring their collective expertise to the study. The investigators will give at least two lessons annually though NASA JSC ARES Classroom Connection Webinars, reaching 500 - 1700 students live, with the lectures archived as recordings. The investigators also interact with visiting educators through tours of the laboratory facilities.


Start-up of an internal combustion engine comprises maintaining one or more engine valves in an engine cylinder in a continuously open state for more than one engine cycle during engine cranking. When it is determined that an engine parameter or transmission oil pressure has reached a predetermined value, maintenance of the one or more engine valves in the continuously open state is discontinued and fuel is subsequently provided to the engine cylinder for engine start-up. In various embodiments, the engine parameter may comprise an engine temperature parameter, an engine pressure parameter or an engine electrical parameter.


Patent
Jacobs Inc. | Date: 2016-01-08

A lost motion engine valve actuation system and method of actuating an engine valve are disclosed. The system may comprise a valve train element, a pivoting lever, a control piston, and a hydraulic circuit. The pivoting lever may include a first end for contacting the control piston, a second end for transmitting motion to a valve stem and a means for contacting a valve train element. The amount of lost motion provided by the system may be selected by varying the position of the control piston relative to the pivoting lever. Variation of the control piston position may be carried out by placing the control piston in hydraulic communication with a control trigger valve and one or more accumulators. Actuation of the trigger valve releases hydraulic fluid allowing for adjustment of the control piston position. Means for limiting valve seating velocity, filling the hydraulic circuit upon engine start up, and mechanically locking the control piston/lever for a fixed level of valve actuation are also disclosed.

Loading Jacobs Inc. collaborators
Loading Jacobs Inc. collaborators