Entity

Time filter

Source Type

White Plains, NY, United States

ITT Corporation is a global manufacturing company based in the United States, producing specialty components for the aerospace, transportation, energy and industrial markets.The company was founded in 1920 as International Telephone & Telegraph. During the 1960s and 1970s, under the leadership of its CEO Harold Geneen the company rose to prominence as the archetypal conglomerate, deriving its growth from hundreds of acquisitions in diversified industries. ITT divested its telecommunications assets in 1986, and in 1995 spun off its non-manufacturing divisions, later to be purchased by Starwood Hotels & Resorts Worldwide.In 1996, the current company was founded as a spinoff of ITT as ITT Industries, Inc. and changed its name to ITT Corporation in 2006.In 2011, ITT spun off its defense businesses into a company named Exelis, and its water technology business into a company named Xylem Inc. Wikipedia.


Finneran J.J.,Space and Naval Warfare Systems Center Pacific | Schlundt C.E.,ITT Corporation
Journal of the Acoustical Society of America | Year: 2010

Temporary threshold shift (TTS) was measured in a bottlenose dolphin (Tursiops truncatus) after exposure to 16-s tones at 3 and 20 kHz to examine the effects of exposure frequency on the onset and growth of TTS. Thresholds were measured approximately one-half octave above the exposure frequency using a behavioral response paradigm featuring an adaptive staircase procedure. Preliminary data provide evidence of frequency-specific differences in TTS onset and growth, and increased susceptibility to auditory fatigue after exposure to 3-kHz tones compared to data obtained two years earlier. © 2010 Acoustical Society of America.


Roney J.A.,ITT Corporation | White B.R.,University of California at Davis
Atmospheric Environment | Year: 2010

Near-surface wind-tunnel fugitive dust concentration profiles arising from soil surfaces beds were compared to a finite difference numerical dust transport model. Comparisons of the type shown in this study were previously non-existent in the literature due to the lack of experimental wind-tunnel data for near-surface concentrations over a soil bed. However, in a previous study by the authors, near-surface steady-state concentration profiles were measured in order to obtain fugitive dust emission rates, thus allowing the comparison to models shown in this paper. The novel aspects of the current study include: comparison of concentration profiles of dust obtained experimentally in the wind tunnel with those calculated numerically; comparison of the calculated numerical fetch effect on dust emissions with that obtained in the wind tunnel; and comparison of the emission rates calculated numerically with those obtained experimentally in the wind tunnel. Initial comparisons with the model indicate good agreement implying that the physical mechanism of advection-diffusion is reasonably modeled with the choice of equations for the simple "steady-state" process near the surface. Furthermore, the numerical solutions presented in this paper provide a means to systematically explore the relative impact of varied surface boundary conditions upon the emission process and provide a potential link between wind-tunnel simulations and field scale models. © 2009 Elsevier Ltd. All rights reserved.


Finneran J.J.,Space and Naval Warfare Systems Center Pacific | Schlundt C.E.,ITT Corporation
Journal of the Acoustical Society of America | Year: 2013

Temporary threshold shift (TTS) was measured in two bottlenose dolphins (Tursiops truncatus) after exposure to 16-s tones between 3 and 80 kHz to examine the effects of exposure frequency on the onset, growth, and recovery of TTS. Hearing thresholds were measured approximately one-half octave above the exposure frequency using a behavioral response paradigm featuring an adaptive staircase procedure. Results show frequency-specific differences in TTS onset and growth, and suggest increased susceptibility to auditory fatigue for frequencies between approximately 10 and 30 kHz. Between 3 and 56 kHz, the relationship between exposure frequency and the exposure level required to induce 6 dB of TTS, measured 4 min post-exposure, agrees closely with an auditory weighting function for bottlenose dolphins developed from equal loudness contours [Finneran and Schlundt. (2011). J. Acoust. Soc. Am. 130, 3124-3136]. © 2013 U.S. Government.


Lanzagorta M.,ITT Corporation
Proceedings of SPIE - The International Society for Optical Engineering | Year: 2010

The radar cross section σC is an objective measure of the "radar visibility" of an object. As such, σC is an important concept for the correct characterization of the operational performance of radar systems. Furthermore, σC is equally essential for the design and development of stealth weapon systems and platforms. Recent years have seen the theoretical development of quantum radars, that is, radars that operate with a small number of photons. In this regime, the radar-target interaction is described through photon-atom scattering processes governed by the laws of quantum electrodynamics. As such, it is theoretically inconsistent to use the same σC to characterize the performance of a quantum radar. In this paper we define a quantum radar cross section σQ based on quantum electrodynamics and interferometric considerations. We discuss the theoretical challenges of defining σQ, as well as computer simulations of σC and σQ for simple targets. © 2010 SPIE.


Finneran J.J.,Space and Naval Warfare Systems Center Pacific | Schlundt C.E.,ITT Corporation
Journal of the Acoustical Society of America | Year: 2011

Loudness level measurements in human listeners are straightforward; however, it is difficult to convey the concepts of loudness matching or loudness comparison to (non-human) animals. For this reason, prior studies have relied upon objective measurements, such as response latency, to estimate equal loudness contours in animals. In this study, a bottlenose dolphin was trained to perform a loudness comparison test, where the listener indicates which of two sequential tones is louder. To enable reward of the dolphin, most trials featured tones with identical or similar frequencies, but relatively large sound pressure level differences, so that the loudness relationship was known. A relatively small percentage of trials were probe trials, with tone pairs whose loudness relationship was not known. Responses to the probe trials were used to construct psychometric functions describing the loudness relationship between a tone at a particular frequency and sound pressure level and that of a reference tone at 10 kHz with a sound pressure level of 90, 105, or 115 dB re 1 Pa. The loudness relationships were then used to construct equal loudness contours and auditory weighting functions that can be used to predict the frequency-dependent effects of noise on odontocetes. © 2011 Acoustical Society of America.

Discover hidden collaborations