Entity

Time filter

Source Type

Saint-Georges-sur-Loire, France

Rondeau G.,Applied Scientific Instumentation | Sanchez-Bayo F.,University of Sydney | Tennekes H.A.,Experimental Toxicology Services ETS Nederland BV | Decourtye A.,Itsap Institute Of Labeille | And 2 more authors.
Scientific Reports | Year: 2014

Imidacloprid, one of the most commonly used insecticides, is highly toxic to bees and other beneficial insects. The regulatory challenge to determine safe levels of residual pesticides can benefit from information about the time-dependent toxicity of this chemical. Using published toxicity data for imidacloprid for several insect species, we construct time-to-lethal-effect toxicity plots and fit temporal power-law scaling curves to the data. The level of toxic exposure that results in 50% mortality after time t is found to scale as t 1.7 for ants, from t 1.6 to t 5 for honeybees, and from t 1.46 to t 2.9 for termites. We present a simple toxicological model that can explain t 2 scaling. Extrapolating the toxicity scaling for honeybees to the lifespan of winter bees suggests that imidacloprid in honey at 0.25 μ ... 1/4g/kg would be lethal to a large proportion of bees nearing the end of their life. Source


Henry M.,French National Institute for Agricultural Research | Frochen M.,ARVALIS Institute du vegetal Station Experimentale | Maillet-Mezeray J.,ARVALIS Institute du vegetal Station Experimentale | Breyne E.,ADAPIC Cite de lAgriculture | And 3 more authors.
Ecological Modelling | Year: 2012

A substantial honeybee decline is being observed worldwide. Agricultural intensification and loss of wild floral resources rank among the main factors contributing to this decline. Landscape enhancement of floral resources has been proposed as an agro-environmental scheme intended to provide honeybees with compensatory food sources in intensive agrosystems. Floral scheme efficiency has rarely been evaluated with respect to landscape context. In this study, we developed and validated a modeling tool to delineate the landscape areas likely to be associated with higher efficiency of floral enhancement schemes. In particular, the proximity of some landscape elements used by honeybees, either as foraging habitat or as visual landmark for orientation, may partly determine floral scheme efficiency. We investigated this issue using resource selection functions (RSFs), i.e. models that aim to predict the occurrence of foraging honeybees at floral patches as a function of the presence of keystone landscape elements in their proximity. However, deciding which landscape elements are effectively in the proximity or not is mostly a matter of subjectivity. The novelty of our approach resides in its use of a distance-weighting function to explicitly account for the spatial location of surrounding landscape elements. In that respect, a distance function should be scaled on movement patterns of foraging organisms. Herein, we inferred movement patterns from the autocorrelative properties of honeybee foraging activity. This modeling approach was developed on Phacelia (Phacelia tanacetifolia) field margin strips, a typical " honeybee-friendly" floral scheme. A foraging survey conducted on 170 Phacelia plots (2 m × 2. m) from 17 Phacelia strips, all positioned within the foraging range of an experimental apiary, revealed that (i) the floral scheme efficiency is positively influenced by the presence of linear landscape elements such as hedgerows and forest edges, but negatively affected by the presence of alternative floral resources, and that (ii) weighting the relative importance of those landscape elements by incorporating a distance function into models considerably improved their predictive power. This modeling tool has the potential to help land managers optimizing their financial investment by avoiding low-efficiency landscape areas, or favoring high-efficiency ones, at the time of planning floral enhancement schemes. © 2011 Elsevier B.V. Source


Brun J.-M.,French National Institute for Agricultural Research | Bernadet M.-D.,French National Institute for Agricultural Research | Cornuez A.,French National Institute for Agricultural Research | Leroux S.,French National Institute for Agricultural Research | And 10 more authors.
BMC Genetics | Year: 2015

Background: In mammals, multigenerational environmental effects have been documented by either epidemiological studies in human or animal experiments in rodents. Whether such phenomena also occur in birds for more than one generation is still an open question. The objective of this study was to investigate if a methionine deficiency experienced by a mother (G0) could affect her grand-offspring phenotypes (G2 hybrid mule ducks and G2 purebred Muscovy ducks), through their Muscovy sons (G1). Muscovy drakes are used for the production of mule ducks, which are sterile offspring of female common duck (Anas platyrhynchos) and Muscovy drakes (Cairina moschata). In France, mule ducks are bred mainly for the production of "foie gras", which stems from hepatic steatosis under two weeks of force-feeding (FF). Two groups of female Muscovy ducks received either a methionine deficient diet or a control diet. Their sons were mated to Muscovy or to common duck females to produce Muscovy or Mule ducks, respectively. Several traits were measured in the G2 progenies, concerning growth, feed efficiency during FF, body composition after FF, and quality of foie gras and magret. Results: In the G2 mule duck progeny, grand-maternal methionine deficiency (GMMD) decreased 4, 8, and 12 week body weights but increased weight gain and feed efficiency during FF, and abdominal fat weight. The plasmatic glucose and triglyceride contents at the end of FF were higher in the methionine deficient group. In the G2 purebred Muscovy progeny, GMMD tended to decrease 4 week body weight in both sexes, and decreased weight gain between the ages of 4 and 12 weeks, 12 week body weight, and body weight at the end of FF in male offspring only. GMMD tended to increase liver weight and increased the carcass proportion of liver in both sexes. Conclusion: Altogether, these results show that the mother's diet is able to affect traits linked to growth and to lipid metabolism in the offspring of her sons, in Muscovy ducks. Whether this transmission through the father of information induced in the grand-mother by the environment is epigenetic remains to be demonstrated. © 2015 Brun et al. Source


Kleijn D.,Wageningen University | Winfree R.,Rutgers University | Bartomeus I.,CSIC - Donana Biological Station | Carvalheiro L.G.,University of Leeds | And 58 more authors.
Nature Communications | Year: 2015

There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. © 2015 Macmillan Publishers Limited. All rights reserved. Source


Charreton M.,French National Institute for Agricultural Research | Decourtye A.,UMT | Decourtye A.,Itsap Institute Of Labeille | Henry M.,French National Institute for Agricultural Research | And 4 more authors.
PLoS ONE | Year: 2015

The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae. . .), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing nomortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of fipronil demonstrates that toxicity evaluation requires information onmultiple endpoints (e.g. long term survival) to fully address pesticides risks for honeybees. Pyrethroid- induced locomotor deficits are discussed in light of recent advances regarding their mode of action on honeybee ion channels and current structure-function studies. © 2015 Charreton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original author and source are credited. Source

Discover hidden collaborations