Liberty Lake, WA, United States
Liberty Lake, WA, United States

Itron Inc. is a technology and services company dedicated to the resourceful use of energy and water. Itron provides comprehensive solutions that measure, manage and analyze energy and water. Itron's product portfolio includes electricity, gas, water and thermal energy measurement devices and control technology; communications systems; software; as well as managed and consulting services. Originally a subsidiary of Avista, Itron is now a publicly traded-company that in 2013 reported revenue of $1.9 billion. Wikipedia.


Time filter

Source Type

Disclosed are apparatus and related methodologies for transmitting data related to utility conditions between monitoring locations and a central and/or data collection facility using a meter reading system. Collection of both corrected and uncorrected data from meters is achieved to thereby provide backup data in case of corrector failure. The presently disclosed subject matter also provides for the collection of telemetry data and alarms from correctors and recorders over a meter reading system. Two-way communications over a meter reading system is also provided to permit data transmission to selected endpoint devices.


Disclosed are apparatus and methodology for remotely configuring gateway devices in a gateway-based Advanced Metering Infrastructure (AMI) network. Remotely configurable gateway devices are provided for Internet Protocol (IP) communications between consumption measuring devices and a utility central facility. Communications between the gateway device and central facility may be by way of wired or wireless communications and may include configuration information multicast from the central facility to selected gateway devices.


Patent
Itron | Date: 2017-01-04

Techniques for determining aspects of a topology of a smart grid are described herein, and particularly for determining if one or more electrical meters are connected to the same transformer. In one example, time-stamped voltage data is collected from at least two meters. The voltage data may indicate a slight transient change in voltage resulting from a consumer turning on or off an electrical load. In particular, the slight voltage changes may be sensed by all meters attached to a same transformer based on electrical load changes by any one of the customers on the same transformer. Using the time-stamped voltage data, a time-series of voltage-changes may be generated for each electrical meter. A correlation between the time-series of voltage-changes of pairs of meters may be calculated, to thereby determine an affinity between the meters, and particularly if they are connected to a same transformer.


Patent
Itron | Date: 2017-01-04

Techniques for detecting electrical meter bypass theft are described herein. In one example, a time-series of voltage-changes and current-changes associated with electrical consumption measured at a meter are obtained. The time series may track associated voltage and current changes at short intervals (e.g., 5- minutes). The voltage and current changes may indicate a slight voltage change when an appliance is turned on or off. An analysis (e.g., a regression analysis) may be performed on the voltage-changes against the current-changes. Using the correlation from the analysis, it may be determined if the meter was bypassed.


A new device is deployed to an area in which a network is provided. The new device may join the network using a single handshake via a neighboring device that is a member of the network and register with a network management system managing the network. If the network is overloaded or has limited bandwidth remaining, the network may refuse to admit the new device, or if the new device is isolated, may force some devices that are members of the network to leave or migrate from the network to allow the isolated device to join the network.


Patent
Itron | Date: 2017-05-24

Disclosed are techniques to minimize the electricity consumption of battery powered devices during network communications and performance of other functions. Example techniques include efficiently discovering other mains powered and battery powered devices within communication range of the battery powered device. In another example, techniques enable a battery powered device to serve as a relay for one or more other battery powered devices. In another example, techniques ensure that transmissions to and/or from battery powered devices are delivered efficiently and with low latency. In yet another example, techniques determine whether and under what conditions a battery powered device should migrate from one network to another. In the event of migration, example techniques minimize battery consumption associated with the migration.


Patent
Itron | Date: 2017-02-13

An electrical phase (e.g., a phase from among three-phase power) connected to an electrical meter may be determined. In one example of the techniques, changes in energy or power (e.g., a derivative or differences) may be determined based at least in part on measurements from each of a plurality of meters. Changes in energy or power may be determined based at least in part on electrical transmissions measured at each of the phases of a feeder. A meter may be selected from among the plurality of meters. For each of the plurality of electrical phases, the changes in energy or power measured by the meter may be compared or correlated to the changes in energy or power measured at the feeder. A phase that is connected to the meter may be determined, from among the plurality of electrical phases, based at least in part on the comparisons or correlations.


Patent
Itron | Date: 2017-07-12

Disclosed are apparatus and methodology for improving communications among battery operated network endpoints and a central facility. A battery operated endpoint may determine its remaining battery capacity and decide whether it is able to provide message repeating services to other endpoints within the network. The endpoint may make such decision based also on its own communications reliability to a central facility either directly or via other endpoints operating as repeaters.


Methods and apparatus are disclosed to determine the location of endpoints of interest. An example method involves in response to detecting a transmission from the endpoint, determining whether the endpoint is an endpoint of interest. If the endpoint is the endpoint of interest, the example method involves sending a first command to the endpoint to increase a transmission rate of the endpoint, determining an estimated location of the endpoint using signal strengths of subsequent transmissions from the endpoint, and enabling the transmission rate of the endpoint to decrease.


A tree structured network having plural nodes including a root node wherein means are provided for establishing peer-to-peer communications between nodes of said network. A source node seeking to send a message to a destination node will first request a most advantageous available path from the source to the destination node, and then the root node (or possibly another node within the network that has additional storage resources) will provide a routing path to one or both of the source and destination nodes. Messages may then be sent between the source and destination nodes that may or may not include addressing information in the packet headers without having to request routing information again for additional messages between the same nodes.

Loading Itron collaborators
Loading Itron collaborators