Entity

Time filter

Source Type

Madrid, Spain

Industria de Turbo Propulsores S.A. is a Spanish aircraft engine and gas turbine manufacturer. It is owned by Sener Aeronáutica and Rolls-Royce plc . Wikipedia.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: FoF-ICT-2013.7.2 | Award Amount: 9.64M | Year: 2013

In the manufacturing industry, the machining of medium and big size parts with the required and suitable precision is a challenge, especially in high added value products manufactured in small or single-unit batches made of high performance materials like in aeronautic, space or energy sectors, where conventional process engineering and test/error methods are not completely efficient.\nINTEFIX aims to increase the performance of the machining processes by the use of intelligent fixture systems, allowing the monitoring, control and adaptation of the process to obtain suitable results according to precision, quality and cost requirements.\nThe main outcome of INTEFIX project will be the integration of new and state of the art technologies (sensors, actuators, control algorithms, simulation tools...) applied to the workpiece handling systems to develop intelligent and modular fixtures capable of modify the behaviour and interactions between the process and systems in machining operations; reducing time and costs with improved performance and capabilities.\nThe proposed intelligent-modular fixture is a step forward to the smart manufacturing, providing new features of automation, flexibility, versatility, cost-efficiency and accuracy to the current, state of the art, manufacturing systems and equipment.\nThe intelligent fixture will provide sensors and active drives to obtain a suitable fix of the component modifying the force and position of active locators and clamps, in order to select the suitable static and dynamic behavior of the machine-fixture system for improving the process (setup, deformations, vibrations...). This implies a fast-reliable connection and data transfer between the different ICT systems (CNC, PLC, sensors, actuators, CAD-CAM...) using ad-hoc methodologies and software.\nFurthermore, the use of modular elements eases disassembling and reuse of the advanced components improving the flexibility and sustainability of the manufacturing process.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: AAT.2013.1-3. | Award Amount: 45.04M | Year: 2013

The ENOVAL project will provide the next step of engine technologies to achieve and surpass the ACARE 2020 goals on the way towards Flightpath 2050. ENOVAL completes the European 7th Framework Programme (FP7) roadmap of Level 2 aero engine projects. ENOVAL will focus on the low pressure system of ultra-high by-pass ratio propulsion systems (12 < BPR < 20) in conjunction with ultra high overall pressure ratio (50 < OPR < 70) to provide significant reductions in CO2 emissions in terms of fuel burn (-3% to -5%) and engine noise (-1.3 ENPdB). ENOVAL will focus on ducted geared and non-geared turbofan engines, which are amongst the best candidates for the next generation of short/medium range and long range commercial aircraft applications with an entry into service date of 2025 onward. The expected fan diameter increase of 20 to 35% (vs. year 2000 reference engine) is significant and can be accommodated within the limits of a conventional aircraft configuration. It is in line with the roadmap of the Strategic Research and Innovation Agenda for 2020 to have the technologies ready for Optimised conventional aircraft and engines using best fuel efficiency and noise control technologies, where UHBR propulsion systems are expressively named as a key technology. ENOVAL will be established in a consistent series of Level 2 projects in conjunction with LEMCOTEC for core engine technologies, E-BREAK for system technologies for enabling ultra high OPR engines, and OPENAIR for noise reduction technologies. Finally, ENOVAL will prepare the way towards maturing the technology and preparing industrialisation in coordination with past and existing aero-engine initiatives in Europe at FP7 and national levels.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: AAT.2012.1.1-3. | Award Amount: 5.94M | Year: 2013

In order to achieve the greening of the European air transport with the deployment of low emission and low noise propulsion systems the reduction of core noise plays an important role. The ability to design low core noise aero-engines requires the development of reliable prediction tools. This development demands extensive research with dedicated experimental test cases and sophisticated numerical and analytical modelling work to broaden the physical understanding of core noise generation mechanisms. This objective is only reachable with an extensive cooperation on the European level. In this proposal Research on Core Noise Reduction (RECORD) the major aero-engine manufacturers of five different European countries collaborate to enable the design of low core noise aero-engines. In RECORD the fundamental understanding of core noise generation and how can it be reduced will be achieved by combining the research competence of all European experts in universities and research organizations working in this field of core noise. This concept of the RECORD project is completed by the technology development of small and medium size enterprises distributed in Europe. RECORD will promote the understanding of noise generating mechanism and its propagation taking the interaction of combustor and turbine into account. The importance of direct and indirect noise will be quantified. Through carefully designed experiments and extensive numerical calculations, the numerical methods and assumptions will be validated and extended. As a result, low-order models will provide a quick approach for the noise design of combustors and subsequent turbine stages while the more time-consuming and expensive LES calculation will provide a more detailed picture of the flow physics. Finally, RECORD will develop means and methods for core noise reduction.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: MG-1.10-2015 | Award Amount: 2.19M | Year: 2016

This proposal is in response to the call for International Cooperation in Aeronautics with China, MG-1.10-2015 under Horizon 2020 Enhanced Additive Manufacturing of Metal Components and Resource Efficient Manufacturing Processes for Aerospace Applications. The objectives are to develop the manufacturing processes identified in the call: (i) Additive manufacturing (AM); (ii) Near Net Shape Hot Isostatic Pressing (NNSHIPping) and (iii) Investment Casting of Ti alloys. The end-users specify the properties and provide computer-aided design, (CAD) files of components and these components will be manufactured using one or more of the three technologies. During the research programme, experiments will be carried out aimed at optimising the process routes and these technologies will be optimised using process modelling. Components manufactured during process development will be assessed and their dimensional accuracies and properties compared with specifications and any need for further process development identified. The specific areas that will be focussed on include: (a) the slow build rate and the build up of stresses during AM; (b) the reproducibility of products, the characteristics of the powder and the development of reusable and/or low cost tooling for NNSHIP; (c) the scatter in properties caused by inconsistent microstructures; (d) improving the strength of wax patterns and optimising welding of investment cast products. The process development will be finalised in month 30 so that state-of-the-art demonstrators can be manufactured and assessed by partners and end-users, during the final 6 months. The cost of the process route for components will be provided to the end-users and this, together with their assessment of the quality of these products, will allow the end-users to decide whether to transfer the technologies to their supply chain. The innovation will come through application of improved processes to manufacture the demonstrator components.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: AAT.2010.1.1-2.;AAT.2010.4.1-5. | Award Amount: 7.06M | Year: 2011

The concept of the MERLIN project is to reduce the environmental impact of air transport using Additive Manufacturing (AM) techniques in the manufacture of civil aero engines. MERLIN will develop AM techniques, at the level 1 stage, to allow environmental benefits including near 100% material utilisation, current buy to fly ratios result in massive amounts of waste, no toxic chemical usage and no tooling costs, to impact the manufacture of future aero engine components. All of these factors will drastically reduce emissions across the life-cycle of the parts. There will also be added in-service benefits because of the design freedom in AM. Light-weighting, and the performance improvement of parts will result in reduced fuel consumption and reduced emissions. MERLIN will seek to develop the state-of-the-art by producing higher performance additive manufactured parts in a more productive, consistent, measurable, environmentally friendly and cost effective way. The MERLIN consortia has identified the following areas where a progression of the state-of-the art is needed to take advantage of AM: Productivity increase. Design or Topology optimisation. Powder recycling validation. In-process NDT development. In-process geometrical validation. High specification materials process development. The MERLIN consortium comprises six world leading aero engine manufacturers, Rolls-Royce is the coordinator, six renowned RTD providers and two intelligent SMEs. Impacts will include the development of high value, disruptive AM technologies capable of step changes in performance which will safeguard EU companies in the high value aero engine manufacturing field. AM will significantly reduce waste in an industry where materials require massive amounts of energy and toxic chemicals, in-process toxic chemical usage will be massively reduced, and emissions will drop because of the reduced amount of material involved.

Discover hidden collaborations