Time filter

Source Type

Madrid, Spain

Industria de Turbo Propulsores S.A. is a Spanish aircraft engine and gas turbine manufacturer. It is owned by Sener Aeronáutica and Rolls-Royce plc . Wikipedia.

ITP Group | Date: 2010-04-16

Axis axial position measurement system uses the electric signal generated by one or more sensors at the passage of teeth of a cogwheel fixed on the axis. The cogwheel is cut with at least one group of teeth, including at least three types of teeth of different height: a first type of teeth (

ITP Group | Date: 2011-03-08

This abstract refers to an invention patent related to an emitter wheel assembly, more particularly with the association of a special sensitizer ring set (

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: MG-1.10-2015 | Award Amount: 2.19M | Year: 2016

This proposal is in response to the call for International Cooperation in Aeronautics with China, MG-1.10-2015 under Horizon 2020 Enhanced Additive Manufacturing of Metal Components and Resource Efficient Manufacturing Processes for Aerospace Applications. The objectives are to develop the manufacturing processes identified in the call: (i) Additive manufacturing (AM); (ii) Near Net Shape Hot Isostatic Pressing (NNSHIPping) and (iii) Investment Casting of Ti alloys. The end-users specify the properties and provide computer-aided design, (CAD) files of components and these components will be manufactured using one or more of the three technologies. During the research programme, experiments will be carried out aimed at optimising the process routes and these technologies will be optimised using process modelling. Components manufactured during process development will be assessed and their dimensional accuracies and properties compared with specifications and any need for further process development identified. The specific areas that will be focussed on include: (a) the slow build rate and the build up of stresses during AM; (b) the reproducibility of products, the characteristics of the powder and the development of reusable and/or low cost tooling for NNSHIP; (c) the scatter in properties caused by inconsistent microstructures; (d) improving the strength of wax patterns and optimising welding of investment cast products. The process development will be finalised in month 30 so that state-of-the-art demonstrators can be manufactured and assessed by partners and end-users, during the final 6 months. The cost of the process route for components will be provided to the end-users and this, together with their assessment of the quality of these products, will allow the end-users to decide whether to transfer the technologies to their supply chain. The innovation will come through application of improved processes to manufacture the demonstrator components.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: FoF-ICT-2013.7.2 | Award Amount: 9.64M | Year: 2013

In the manufacturing industry, the machining of medium and big size parts with the required and suitable precision is a challenge, especially in high added value products manufactured in small or single-unit batches made of high performance materials like in aeronautic, space or energy sectors, where conventional process engineering and test/error methods are not completely efficient.\nINTEFIX aims to increase the performance of the machining processes by the use of intelligent fixture systems, allowing the monitoring, control and adaptation of the process to obtain suitable results according to precision, quality and cost requirements.\nThe main outcome of INTEFIX project will be the integration of new and state of the art technologies (sensors, actuators, control algorithms, simulation tools...) applied to the workpiece handling systems to develop intelligent and modular fixtures capable of modify the behaviour and interactions between the process and systems in machining operations; reducing time and costs with improved performance and capabilities.\nThe proposed intelligent-modular fixture is a step forward to the smart manufacturing, providing new features of automation, flexibility, versatility, cost-efficiency and accuracy to the current, state of the art, manufacturing systems and equipment.\nThe intelligent fixture will provide sensors and active drives to obtain a suitable fix of the component modifying the force and position of active locators and clamps, in order to select the suitable static and dynamic behavior of the machine-fixture system for improving the process (setup, deformations, vibrations...). This implies a fast-reliable connection and data transfer between the different ICT systems (CNC, PLC, sensors, actuators, CAD-CAM...) using ad-hoc methodologies and software.\nFurthermore, the use of modular elements eases disassembling and reuse of the advanced components improving the flexibility and sustainability of the manufacturing process.

Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: AAT.2013.1-3. | Award Amount: 45.04M | Year: 2013

The ENOVAL project will provide the next step of engine technologies to achieve and surpass the ACARE 2020 goals on the way towards Flightpath 2050. ENOVAL completes the European 7th Framework Programme (FP7) roadmap of Level 2 aero engine projects. ENOVAL will focus on the low pressure system of ultra-high by-pass ratio propulsion systems (12 < BPR < 20) in conjunction with ultra high overall pressure ratio (50 < OPR < 70) to provide significant reductions in CO2 emissions in terms of fuel burn (-3% to -5%) and engine noise (-1.3 ENPdB). ENOVAL will focus on ducted geared and non-geared turbofan engines, which are amongst the best candidates for the next generation of short/medium range and long range commercial aircraft applications with an entry into service date of 2025 onward. The expected fan diameter increase of 20 to 35% (vs. year 2000 reference engine) is significant and can be accommodated within the limits of a conventional aircraft configuration. It is in line with the roadmap of the Strategic Research and Innovation Agenda for 2020 to have the technologies ready for Optimised conventional aircraft and engines using best fuel efficiency and noise control technologies, where UHBR propulsion systems are expressively named as a key technology. ENOVAL will be established in a consistent series of Level 2 projects in conjunction with LEMCOTEC for core engine technologies, E-BREAK for system technologies for enabling ultra high OPR engines, and OPENAIR for noise reduction technologies. Finally, ENOVAL will prepare the way towards maturing the technology and preparing industrialisation in coordination with past and existing aero-engine initiatives in Europe at FP7 and national levels.

Discover hidden collaborations