Fondazione Italiana Fegato Italian Liver Foundation

Trieste, Italy

Fondazione Italiana Fegato Italian Liver Foundation

Trieste, Italy

Time filter

Source Type

Robert M.C.,Centro Binacional Argentina Italia Of Investigaciones En Criobiologia Clinica Y Aplicada Caic | Robert M.C.,Fondazione Italiana Fegato Italian Liver Foundation | Robert M.C.,CONICET | Juan de Paz L.,Centro Binacional Argentina Italia Of Investigaciones En Criobiologia Clinica Y Aplicada Caic | And 7 more authors.
Cryobiology | Year: 2016

Although primary neuronal cells are routinely used for neuroscience research, with potential clinical applications such as neuronal transplantation and tissue engineering, a gold standard protocol for preservation has not been yet developed. In the present work, a slow cooling methodology without ice seeding was studied and optimized for cryopreservation of rat cerebellar granular cells. Parameters such as cooling rate, plunge temperature and cryoprotective agent concentration were assessed using a custom built device based on Pye's freezer idea. Cryopreservation outcome was evaluated by post thawing cell viability/viable cell yield and in culture viability over a period of 14 days. The best outcome was achieved when 10% of Me2SO as cryoprotective agent, a cooling rate of 3.1 ± 0.2 °C/min and a plunge temperature of -48.2 ± 1.5 °C were applied. The granular cells cryopreserved under these conditions exhibited a cell viability of 82.7 ± 2.7% and a viable cell yield of 28.6 ± 2.2%. Moreover, cell viability in culture remained above 50%, very similar to not cryopreserved cells (control). Our results also suggest that post-thaw viability (based on membrane integrity assays) not necessarily reflects the quality of the cryopreservation procedure and proper functionality tests must be carried out in order to optimize both post thaw viability/cell yield and in culture performance. © 2016 Elsevier Inc.


PubMed | Fondazione Italiana Fegato Italian Liver Foundation, Centro Binacional Argentina Italia Of Investigaciones En Criobiologia Clinica Y Aplicada Caic, CONICET, Servicio de Electronica y Optica and 2 more.
Type: Journal Article | Journal: Cryobiology | Year: 2016

Although primary neuronal cells are routinely used for neuroscience research, with potential clinical applications such as neuronal transplantation and tissue engineering, a gold standard protocol for preservation has not been yet developed. In the present work, a slow cooling methodology without ice seeding was studied and optimized for cryopreservation of rat cerebellar granular cells. Parameters such as cooling rate, plunge temperature and cryoprotective agent concentration were assessed using a custom built device based on Pyes freezer idea. Cryopreservation outcome was evaluated by post thawing cell viability/viable cell yield and in culture viability over a period of 14days. The best outcome was achieved when 10% of Me2SO as cryoprotective agent, a cooling rate of 3.10.2C/min and a plunge temperature of-48.21.5C were applied. The granular cells cryopreserved under these conditions exhibited a cell viability of 82.72.7% and a viable cell yield of 28.62.2%. Moreover, cell viability in culture remained above 50%, very similar to not cryopreserved cells (control). Our results also suggest that post-thaw viability (based on membrane integrity assays) not necessarily reflects the quality of the cryopreservation procedure and proper functionality tests must be carried out in order to optimize both post thaw viability/cell yield and in culture performance.


Gazzin S.,Fondazione Italiana Fegato Italian Liver Foundation | Zelenka J.,Charles University | Zdrahalova L.,Charles University | Konickova R.,Charles University | And 7 more authors.
Pediatric Research | Year: 2012

Introduction: Few data exist on regional brain bilirubin content in the neonatal period when acute bilirubin-induced neurologic damage (BIND) may occur, and no information is available on regional brain expression of cytochrome P450 monooxygenases (Cyps) that oxidize bilirubin. Methods: Bilirubin content was analyzed by high-performance liquid chromatography and Cyp1a1, 1a2, and 2a3 mRNA expression was analyzed by quantitative PCR (qPCR) in cortex (Cx), cerebellum (Cll), superior colliculi (SC), and inferior colliculi (IC) of 17-d-old hyperbilirubinemic (jj) Gunn rat pups before and after administration of sulphadimethoxine to acutely displace bilirubin from plasma albumin. Results: There was no difference in bilirubin content among brain regions in untreated rats. After intraperitoneal sulphadimethoxine, bilirubin content peaked at fourfold in Cx and SC at 1h; but at 11-to 13-fold in Cll and IC at 24h; returning to control levels at 72h. The Cyp mRNA peaked at 30-70 times control at 1h in Cx and SC, but at 3-9 times control at 24h in Cll and IC. Discussion: The close relationship in distinct brain regions between the extent of bilirubin accumulation and induction of mRNA of Cyps suggests Cyps may have a role in protecting selected brain areas from bilirubin neurotoxicity. © 2012 International Pediatric Research Foundation, Inc.


Robert M.C.,Fondazione Italiana Fegato Italian Liver Foundation | Furlan G.,Fondazione Italiana Fegato Italian Liver Foundation | Rosso N.,Fondazione Italiana Fegato Italian Liver Foundation | Gambaro S.E.,Fondazione Italiana Fegato Italian Liver Foundation | And 5 more authors.
PLoS ONE | Year: 2013

Severe hyperbilirubinemia causes neurological damage both in humans and rodents. The hyperbilirubinemic Gunn rat shows a marked cerebellar hypoplasia. More recently bilirubin ability to arrest the cell cycle progression in vascular smooth muscle, tumour cells, and, more importantly, cultured neurons has been demonstrated. However, the involvement of cell cycle perturbation in the development of cerebellar hypoplasia was never investigated before. We explored the effect of sustained spontaneous hyperbilirubinemia on cell cycle progression and apoptosis in whole cerebella dissected from 9 day old Gunn rat by Real Time PCR, Western blot and FACS analysis. The cerebellum of the hyperbilirubinemic Gunn rats exhibits an increased cell cycle arrest in the late G0/G1 phase (p < 0.001), characterized by a decrease in the protein expression of cyclin D1 (15%, p < 0.05), cyclin A/A1 (20 and 30%, p < 0.05 and 0.01, respectively) and cyclin dependent kinases2 (25%, p < 0.001). This was associated with a marked increase in the 18 kDa fragment of cyclin E (67%, p < 0.001) which amplifies the apoptotic pathway. In line with this was the increase of the cleaved form of Poly (ADP-ribose) polymerase (54%, p < 0.01) and active Caspase3 (two fold, p < 0.01). These data indicate that the characteristic cerebellar alteration in this developing brain structure of the hyperbilirubinemic Gunn rat may be partly due to cell cycle perturbation and apoptosis related to the high bilirubin concentration in cerebellar tissue mainly affecting granular cells. These two phenomena might be intimately connected. Copyright: © 2013 Robert et al.


Sukowati C.H.C.,University of Trieste | Sukowati C.H.C.,Fondazione Italiana Fegato Italian Liver Foundation | Anfuso B.,Fondazione Italiana Fegato Italian Liver Foundation | Croce L.S.,University of Trieste | And 3 more authors.
BMC Cancer | Year: 2015

The presence of tumor supporting cells in various cancer, including in hepatocellular carcinoma (HCC), has become an important target in the study of carcinogenesis. The cancer-associated fibroblast (CAF), one of the most important cellular components in the cancer stroma, might contribute to the progression of the disease due to its plasticity, a behavior of the stem cells. In this study, we investigate the significance of the CAF and its role in the HCC progression and metastasis. Methods: Primary CAF and non-tumoral fibroblast (NTF) from nine paired HCC and distant non-tumoral liver tissues were isolated and cultured. The cells were characterized by flow cytometry, RT-PCR, anchorage-independent assay and in vitro cells directed trans-differentiation. Co-culture study was performed in Transwell system and xenograft assay was performed in immunodeficient mice. Results: CAF and NTF were positive for CD90, CD44, αSMA, and vimentin and negative for CD34, CD45, CD117, and CD133. When stimulated, they showed the potential to differentiate into adipocytes, osteoblasts, and pancreatic cells. When co-cultured with human HCC cell lines, CAF up-regulated gene expressions of TGFB1 and FAP of HuH-7 and JHH-6 while NTF did not induced either of the genes. Xenograft assay showed that the CAF had the capacity to enter into circulation as confirmed by RT-PCR and DNA sequencing. Conclusion: Our data provides evidence of the plasticity of the CAF and the NTF as stem cells in the process of hepatocarcinogenesis and metastasis. These cells mutually interacts with HCC cells. Their trans-differentiation flexibility may induce a switch from normal to cancerous microenvironment. © Sukowati et al.; licensee BioMed Central.


PubMed | Fondazione Italiana Fegato Italian Liver Foundation and University of Trieste
Type: | Journal: BMC cancer | Year: 2015

The presence of tumor supporting cells in various cancer, including in hepatocellular carcinoma (HCC), has become an important target in the study of carcinogenesis. The cancer-associated fibroblast (CAF), one of the most important cellular components in the cancer stroma, might contribute to the progression of the disease due to its plasticity, a behavior of the stem cells. In this study, we investigate the significance of the CAF and its role in the HCC progression and metastasis.Primary CAF and non-tumoral fibroblast (NTF) from nine paired HCC and distant non-tumoral liver tissues were isolated and cultured. The cells were characterized by flow cytometry, RT-PCR, anchorage-independent assay and in vitro cells directed trans-differentiation. Co-culture study was performed in Transwell system and xenograft assay was performed in immunodeficient mice.CAF and NTF were positive for CD90, CD44, SMA, and vimentin and negative for CD34, CD45, CD117, and CD133. When stimulated, they showed the potential to differentiate into adipocytes, osteoblasts, and pancreatic cells. When co-cultured with human HCC cell lines, CAF up-regulated gene expressions of TGFB1 and FAP of HuH-7 and JHH-6 while NTF did not induced either of the genes. Xenograft assay showed that the CAF had the capacity to enter into circulation as confirmed by RT-PCR and DNA sequencing.Our data provides evidence of the plasticity of the CAF and the NTF as stem cells in the process of hepatocarcinogenesis and metastasis. These cells mutually interacts with HCC cells. Their trans-differentiation flexibility may induce a switch from normal to cancerous microenvironment.


PubMed | Fondazione Italiana Fegato Italian Liver Foundation
Type: Journal Article | Journal: PloS one | Year: 2013

Severe hyperbilirubinemia causes neurological damage both in humans and rodents. The hyperbilirubinemic Gunn rat shows a marked cerebellar hypoplasia. More recently bilirubin ability to arrest the cell cycle progression in vascular smooth muscle, tumour cells, and, more importantly, cultured neurons has been demonstrated. However, the involvement of cell cycle perturbation in the development of cerebellar hypoplasia was never investigated before. We explored the effect of sustained spontaneous hyperbilirubinemia on cell cycle progression and apoptosis in whole cerebella dissected from 9 day old Gunn rat by Real Time PCR, Western blot and FACS analysis. The cerebellum of the hyperbilirubinemic Gunn rats exhibits an increased cell cycle arrest in the late G0/G1 phase (p < 0.001), characterized by a decrease in the protein expression of cyclin D1 (15%, p < 0.05), cyclin A/A1 (20 and 30%, p < 0.05 and 0.01, respectively) and cyclin dependent kinases2 (25%, p < 0.001). This was associated with a marked increase in the 18 kDa fragment of cyclin E (67%, p < 0.001) which amplifies the apoptotic pathway. In line with this was the increase of the cleaved form of Poly (ADP-ribose) polymerase (54%, p < 0.01) and active Caspase3 (two fold, p < 0.01). These data indicate that the characteristic cerebellar alteration in this developing brain structure of the hyperbilirubinemic Gunn rat may be partly due to cell cycle perturbation and apoptosis related to the high bilirubin concentration in cerebellar tissue mainly affecting granular cells. These two phenomena might be intimately connected.

Loading Fondazione Italiana Fegato Italian Liver Foundation collaborators
Loading Fondazione Italiana Fegato Italian Liver Foundation collaborators