Time filter

Source Type

Lauzacco, Italy

Bagnasco L.,University of Genoa | Cosulich M.E.,University of Genoa | Cosulich M.E.,University of Pavia | Speranza G.,University of Milan | And 4 more authors.
Food Chemistry

The relationships between sensory attribute and analytical measurements, performed by electronic tongue (ET) and near-infrared spectroscopy (NIRS), were investigated in order to develop a rapid method for the assessment of umami taste. Commercially available umami products and some aminoacids were submitted to sensory analysis. Results were analysed in comparison with the outcomes of analytical measurements. Multivariate exploratory analysis was performed by principal component analysis (PCA). Calibration models for prediction of the umami taste on the basis of ET and NIR signals were obtained using partial least squares (PLS) regression. Different approaches for merging data from the two different analytical instruments were considered. Both of the techniques demonstrated to provide information related with umami taste. In particular, ET signals showed the higher correlation with umami attribute. Data fusion was found to be slightly beneficial - not so significantly as to justify the coupled use of the two analytical techniques. © 2014 Elsevier Ltd. All rights reserved. Source

Kaewmanee T.,University of Genoa | Bagnasco L.,University of Genoa | Bagnasco L.,University of Milan | Benjakul S.,Prince of Songkla University | And 6 more authors.
Food Chemistry

The chemical composition, physicochemical, functional and sensory properties of mucilages, extracted from seven Italian flax cultivars, were evaluated. All samples were composed of neutral and acidic sugars, with a low protein content. From the NMR data, a rhamnogalacturonan backbone could be inferred as a common structural feature for all the mucilages, with some variations depending on the cultivar. All the suspensions showed a poor stability, which was consistent with a low zeta potential absolute value. The viscosity seemed to be positively correlated with the neutral sugars and negatively with the amount of proteins. Functional properties were dependent on the cultivar. The sensory analysis showed that most mucilages are tasteless. All these outcomes could support the use of flaxseed mucilages for industrial applications. In particular, Solal and Festival cultivars could be useful as thickeners, due to their high viscosity, while Natural, Valoal and Kaolin as emulsifiers for their good surface-active properties. © 2013 Elsevier Ltd. All rights reserved. Source

Temporini C.,University of Pavia | Temporini C.,Italian Biocatalysis Center | Bonomi P.,University of Pavia | Bonomi P.,Italian Biocatalysis Center | And 12 more authors.

An innovative approach to determine the orientation of penicillin G acylase (PGA) from Escherichia coli covalently immobilized onto solid supports has been developed. This method is based on tryptic digestion of immobilized PGA followed by HPLC-MS analysis of the released peptides which are supposed to be only those exposed toward the reaction medium and not directly bound to the solid support. To this purpose, PGA was immobilized on Eupergit C (acrylic hydrophobic resin) and glyoxyl-agarose (hydrophilic resin) functionalized with epoxy and aldehyde groups, respectively, both involving the Lys residues of the protein. The peptide maps obtained were analyzed to derive the orientation of immobilized PGA, as the position of the detected Lys gave indication concerning the accessibility of the different areas of the protein. The results indicate that PGA immobilization on both supports involves mainly Lys located near the binding pocket (70%). Some differences in the enzyme orientation on the two supports can be deduced by the presence of different unbound Lys residues in the released peptides, specific to each support (Lys 117R for PGA-Eupergit C; Lys 163R and Lys 165R for PGA-glyoxylagarose). These results have been correlated with the data obtained in the kinetically controlled synthesis and indicate that the orientation of PGA on both supports is partially unfavorable, driving the active site near the support surface. This type of orientation of the enzyme enhances the effect of the nature of the support and of the binding chemistry on the catalytic properties. The information obtained indicated the most suitable support and activation strategy to design an immobilized acylase with good synthetic properties for preparative processes. The glyoxyl-Eupergit C support with enhanced porosity synergically combines the mechanical stability and synthetic performances of immobilized PGA and was successfully used in the synthesis of several cephalosporins. © 2010 American Chemical Society. Source

Ubiali D.,University of Pavia | Ubiali D.,Italian Biocatalysis Center | Serra C.D.,University of Milan | Serra I.,University of Pavia | And 9 more authors.
Advanced Synthesis and Catalysis

Purine nucleoside phosphorylase (PNP) from Aeromonas hydrophila encoded by the deoD gene has been over-expressed in Escherichia coli, purified, characterized about its substrate specificity and used for the preparative synthesis of some 6-substituted purine-9-ribosides. Substrate specificity towards natural nucleosides showed that this PNP catalyzes the phosphorolysis of both 6-oxo- and 6-aminopurine (deoxy)ribonucleosides. A library of nucleoside analogues was synthesized and then submitted to enzymatic phosphorolysis as well. This assay revealed that 1-, 2-, 6- and 7-modified nucleosides are accepted as substrates, whereas 8-substituted nucleosides are not. A few transglycosylation reactions were carried out using 7-methylguanosine iodide (4) as a d-ribose donor and 6-substituted purines as acceptor. In particular, following this approach, 2- amino-6-chloropurine-9-riboside (2c), 6-methoxypurine- 9-riboside (2d) and 2-amino-6-(methylthio)purine- 9-riboside (2g) were synthesized in very high yield and purity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim. Source

Calleri E.,University of Pavia | Cattaneo G.,University of Pavia | Rabuffetti M.,University of Milan | Serra I.,University of Pavia | And 8 more authors.
Advanced Synthesis and Catalysis

A purine nucleoside phosphorylase from Aeromonas hydrophyla (AhPNP) was covalently immobilized in a pre-packed stainless steel column containing aminopropylsilica particles via Schiff base chemistry upon glutaraldehyde activation. The resulting AhPNP-IMER (Immobilized Enzyme Reactor, immobilization yield ≈50%) was coupled on-line through a 6-way switching valve to an HPLC apparatus containing an analytical or a semi-preparative chromatographic column. The synthesis of five 6-modified purine ribonucleosides was carried out by continuously pumping the reaction mixture through the AhPNP-IMER until the highest conversion was reached, and then directing the reaction mixture to chromatographic separation. The conditions of the AhPNP-catalyzed transglycosylations (2:1 ratio sugar donor:base acceptor; 10 mM phosphate buffer; pH 7.5; temperature 37 °C, flow rate 0.5 mL min-1) were optimized by a fractional factorial experimental design. Coupling the bioconversion step with the product purification in such an integrated platform resulted in a fast and efficient synthetic process (yield=52-89%; <10 mg) where sample handling was minimized. To date, AhPNP-IMER has retained completely its activity upon 50 reactions in 10 months. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source

Discover hidden collaborations