Entity

Time filter

Source Type

Milano, Italy

Gallus S.,Istituto di Ricerche Farmacologiche Mario Negri | Lugo A.,Istituto di Ricerche Farmacologiche Mario Negri | Colombo P.,Istituto | Pacifici R.,Istituto Superiore di Sanita | And 2 more authors.
Preventive Medicine | Year: 2013

Objective: To provide updated information on smoking prevalence in Italy, with a focus on type of tobacco product, including hand-rolled (HR) cigarettes. Method: Two nationally representative surveys were conducted in 2011 and 2012 in Italy on a total sample of 6167 adults. Information on type of tobacco most frequently smoked was collected. Results: Current smokers were 21.7% (22.7% in 2011 and 20.8% in 2012) overall, 25.3% among men and 18.4% among women. Among smokers, 94.6% most frequently consumed manufactured cigarettes, 4.6% HR cigarettes, 0.5% cigars, 0.2% cigarillos, and 0.2% pipe and none smokeless tobacco. HR cigarette use was more frequent in men (6.9%) than in women (1.7%), in 2012 (5.9%) than in 2011 (3.4%), and among the young (15-24. years; 9.1%). The average estimated price of one HR cigarette was 0.09€ and that of a manufactured cigarette was 0.18€. Conclusion: In 2012 we observed the lowest reported overall smoking prevalence in Italy, though change since 2008 has been limited. The proportion of HR cigarettes on total tobacco trade has appreciably increased, particularly among young male smokers, who appear to switch to affordable cigarettes in a period of economic crisis. Fiscal policies aiming to equalise the cost of different cigarette types are needed in Italy. © 2013 Elsevier Inc. Source


News Article | April 12, 2016
Site: http://www.rdmag.com/rss-feeds/all/rss.xml/all

Remote sensing techniques facilitate observations and monitoring of ground displacements. In particular, space-borne Differential Synthetic Aperture Radar Interferometry (DInSAR) allows accurate measurements of ground deformation by properly analyzing multi-temporal satellite acquisitions over the region of interest. However, limitations of DInSAR may arise when large and/or rapid surface deformation occurs, including those caused by active rifting. Understanding the three-dimensional characteristics of the deformation field, as well as its temporal evolution, cannot be accomplished by DInSAR alone. Remote sensing techniques facilitate observations and monitoring of ground displacements. In particular, space-borne Differential Synthetic Aperture Radar Interferometry (DInSAR) allows accurate measurements of ground deformation by properly analyzing multi-temporal satellite acquisitions over the region of interest. However, limitations of DInSAR may arise when large and/or rapid surface deformation occurs, including those caused by active rifting. Understanding the three-dimensional characteristics of the deformation field, as well as its temporal evolution, cannot be accomplished by DInSAR alone. Accurate spatial and temporal dense information on the displacements is, however, crucial for the correct interpretation of complex geological phenomena. In this paper, Francesco Casu and Andrea Manconi propose an algorithm to retrieve the four-dimensional (i.e., along north, east, up, and time) surface deformation field over zones affected by active rifting. In the Afar depression system, one of the locations worldwide where active rifting processes can be observed, Casu and Manconi retrieved information in areas where data was not previously recorded. Their method demonstrates its validity in complex situations such as rifting episodes, where the deformation associated to repeated intrusions, faulting, and lithospheric extension might overlap in space and time. Francesco Casu, 1 IREA (Istituto per il Rilevamento Elettromagnetico dell'Ambiente), National Research Council, Via Diocleziano 328, 80124 Napoli, Italy; and Andrea Manconi and Dept. of Earth Sciences, Swiss Federal Institute of Technology, 8902 Zurich, Switzerland. Themed issue: Anatomy of Rifting: Tectonics and Magmatism in Continental Rifts, Oceanic Spreading Centers, and Transforms. This article is OPEN ACCESS online at http://geosphere.gsapubs.org/content/early/2016/04/07/GES01225.1.abstract


News Article
Site: http://www.cemag.us/rss-feeds/all/rss.xml/all

École Polytechnique Fédérale de Lausanne (EPFL) scientists have developed a solar-panel material that can cut down on photovoltaic costs while achieving competitive power-conversion efficiency of 20.2 percent. Some of the most promising solar cells today use light-harvesting films made from perovskites — a group of materials that share a characteristic molecular structure. However, perovskite-based solar cells use expensive “hole-transporting” materials, whose function is to move the positive charges that are generated when light hits the perovskite film. Publishing in Nature Energy, EPFL scientists have now engineered a considerably cheaper hole-transporting material that costs only a fifth of existing ones while keeping the efficiency of the solar cell above 20 percent. As the quality of perovskite films increases, researchers are seeking other ways of improving the overall performance of solar cells. Inadvertently, this search targets the other key element of a solar panel, the hole-transporting layer, and specifically, the materials that make them up. There are currently only two hole-transporting materials available for perovskite-based solar cells. Both types are quite costly to synthesize, adding to the overall expense of the solar cell. To address this problem, a team of researchers led by Mohammad Nazeeruddin at EPFL developed a molecularly engineered hole-transporting material called FDT that can bring costs down while keeping efficiency up to competitive levels. Tests showed that the efficiency of FDT rose to 20.2 percent — higher than the other two, more expensive alternatives. And because FDT can be easily modified, it acts as a blueprint for an entire generation of new low-cost hole-transporting materials. “The best performing perovskite solar cells use hole transporting materials, which are difficult to make and purify and are prohibitively expensive, costing [over $300] per gram, preventing market penetration,” says Nazeeruddin. “By comparison, FDT is easy to synthesize and purify, and its cost is estimated to be a fifth of that for existing materials — while matching, and even surpassing their performance.” This study was led by EPFL’s Group for Molecular Engineering of Functional Materials, in collaboration with the Istituto di Scienze e Tecnologie Molecolari del Consiglio Nazionale delle Ricerche (Italy), Panasonic Corporation (Japan), EPFL’s Laboratory for Photomolecular Science and Laboratory of Photonics and Interfaces, and the Qatar Environment and Energy Research Institute. It was funded by the European Union Seventh Framework Programme (MESO; ENERGY; NANOMATCELL), the Swiss National Science Foundation, and Nano-Tera. Release Date: January 18, 2016 Source: École Polytechnique Fédérale de Lausanne


News Article
Site: http://news.yahoo.com/green/

In a world designed to accommodate the shape of the human body, anthropomorphic robots could have advantages over wheeled and animal-shaped robots that could help them integrate into society more easily. Scientists from the Istituto Italiano di Tecnologia (Italian Institute of Technology) and University of Pisa in Italy have developed a humanoid robot that can operate human tools and interact with its environment in the same way a person would. They hope their Walk-Man robot will prove a more effective design for search and rescue scenarios where it's too dangerous for humans to venture. Lead researcher Nikos Tsagarakis believes the world won't need to be adapted to accommodate Walk-Man, meaning it could eventually operate in damaged buildings; turning a heavy valve of lifting collapsed masonry, for example. "There's one factor that everyone agrees, that actually our world, our environment it was designed for our body basically. So, we have tools that are designed to be grasped by humanoid, human hands. You have also areas or access paths that are actually appropriate for our body forms. So it means that if you build a robot that has a very similar form, you need to adapt less the environment in order to have this robot operational within such a space," Tsagarakis told Reuters. To effectively navigate through tricky environments, Walk-Man uses all its limbs to demonstrate whole-body motion dynamics. Using its hands, arms, legs and feet, Walk-Man can maintain a more stable and balanced motion by reaching out to support itself while overcoming obstacles. Tsagarakis says their aim is to make the Walk-Man robot demonstrate human type locomotion, balance and manipulation capabilities. "We believe that - as humans also do - that legs are not only enough. You have to use also the arms, you have to be able to grasp the environment and actually assist your locomotion by creating additional contacts with the environmental balance," he said. "This will make a big difference in humanoids where currently the technology is limited to the solutions that provide the balance basically only using the lower body. Upper body is also important; especially if you want to pass through cluttered spaces and structural grounds and so on." Walk-Man stands more than six feet tall (1.85 metres), with an arm span of two metres and a weight of 118 kilograms. Its head module is equipped with a stereo vision system and a rotating 3D laser scanner to help it make sense of its environment. The researchers are working towards algorithms that will allow more rapid manipulation skills, combined with reflexive behaviours that will allow the robot to cope with uneven terrain and rapid start and stop gait transitions. Eventually they want the robot to have sufficient perception and cognitive ability to permit it to operate autonomously. However, the plan is for a human operator to remotely take control of it when more advanced problem solving is needed. "The idea with this robot is that will always be some pilots at the back, that will be remotely placed and actually guide the robot in any case that a decision needs to be made. The robot will transfer data, like perception data, back to the operator, and the operator will take the actions and decide what is the next movement for the robot," said Tsagarakis. Their aim is not necessarily to make the robot faster because that increases the likelihood of accidents, he said. "When the robot is going slow it is actually easier than when trying to be more aggressive and go fast. In structural environments like those after physical disasters, you have also the possibility that these robots would collide accidentally with the environment. And the faster you move, the harder will be the impact forces. Which means again that you may have issues that you could face with actual hardware robustness," said Tsagarakis, adding that they are focused on making Walk-Man even more dextrous and improving its robust balanced locomotion. The first prototype of the Walk-Man robot took part in the DARPA Robotics Challenge finals in June, where teams from around the world showcased robots capable of assisting humans in responding to natural and man-made disasters.


News Article
Site: http://www.nanotech-now.com/

Abstract: EPFL scientists have developed a solar-panel material that can cut down on photovoltaic costs while achieving competitive power-conversion efficiency of 20.2%. Some of the most promising solar cells today use light-harvesting films made from perovskites - a group of materials that share a characteristic molecular structure. However, perovskite-based solar cells use expensive "hole-transporting" materials, whose function is to move the positive charges that are generated when light hits the perovskite film. Publishing in Nature Energy, EPFL scientists have now engineered a considerably cheaper hole-transporting material that costs only a fifth of existing ones while keeping the efficiency of the solar cell above 20%. As the quality of perovskite films increases, researchers are seeking other ways of improving the overall performance of solar cells. Inadvertently, this search targets the other key element of a solar panel, the hole-transporting layer, and specifically, the materials that make them up. There are currently only two hole-transporting materials available for perovskite-based solar cells. Both types are quite costly to synthesize, adding to the overall expense of the solar cell. To address this problem, a team of researchers led by Mohammad Nazeeruddin at EPFL developed a molecularly engineered hole-transporting material, called FDT, that can bring costs down while keeping efficiency up to competitive levels. Tests showed that the efficiency of FDT rose to 20.2% - higher than the other two, more expensive alternatives. And because FDT can be easily modified, it acts as a blueprint for an entire generation of new low-cost hole-transporting materials. "The best performing perovskite solar cells use hole transporting materials, which are difficult to make and purify, and are prohibitively expensive, costing over €300 per gram preventing market penetration," says Nazeeruddin. "By comparison, FDT is easy to synthesize and purify, and its cost is estimated to be a fifth of that for existing materials - while matching, and even surpassing their performance." ### This study was led by EPFL's Group for Molecular Engineering of Functional Materials, in collaboration with the Istituto di Scienze e Tecnologie Molecolari del Consiglio Nazionale delle Ricerche (Italy), Panasonic Corporation (Japan), EPFL's Laboratory for Photomolecular Science and Laboratory of Photonics and Interfaces, and the Qatar Environment and Energy Research Institute. It was funded by the European Union Seventh Framework Programme (MESO; ENERGY; NANOMATCELL), the Swiss National Science Foundation, and Nano-Tera. For more information, please click If you have a comment, please us. Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Discover hidden collaborations