Time filter

Source Type


Bollenbach T.,IST Austria
Current Opinion in Microbiology | Year: 2015

Combining antibiotics is a promising strategy for increasing treatment efficacy and for controlling resistance evolution. When drugs are combined, their effects on cells may be amplified or weakened, that is the drugs may show synergistic or antagonistic interactions. Recent work revealed the underlying mechanisms of such drug interactions by elucidating the drugs' joint effects on cell physiology. Moreover, new treatment strategies that use drug combinations to exploit evolutionary tradeoffs were shown to affect the rate of resistance evolution in predictable ways. High throughput studies have further identified drug candidates based on their interactions with established antibiotics and general principles that enable the prediction of drug interactions were suggested. Overall, the conceptual and technical foundation for the rational design of potent drug combinations is rapidly developing. © 2015 The Authors. Source

Csicsvari J.,IST Austria
Philosophical transactions of the Royal Society of London. Series B, Biological sciences | Year: 2014

Sharp wave/ripple (SWR, 150-250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps. Source

De Vladar H.P.,IST Austria
International Journal of Astrobiology | Year: 2013

The search for extra-terrestrial intelligence (SETI) has been performed principally as a one-way survey, listening of radio frequencies across the Milky Way and other galaxies. However, scientists have engaged in an active messaging only rarely. This suggests the simple rationale that if other civilizations exist and take a similar approach to ours, namely listening but not broadcasting, the result is a silent universe. A simple game theoretical model, the prisoner's dilemma, explains this situation: each player (civilization) can passively search (defect), or actively search and broadcast (cooperate). In order to maximize the payoff (or, equivalently, minimize the risks) the best strategy is not to broadcast. In fact, the active search has been opposed on the basis that it might be dangerous to expose ourselves. However, most of these ideas have not been based on objective arguments, and ignore accounting of the possible gains and losses. Thus, the question stands: should we perform an active search? I develop a game-theoretical framework where civilizations can be of different types, and explicitly apply it to a situation where societies are either interested in establishing a two-way communication or belligerent and in urge to exploit ours. The framework gives a quantitative solution (a mixed-strategy), which is how frequent we should perform the active SETI. This frequency is roughly proportional to the inverse of the risk, and can be extremely small. However, given the immense amount of stars being scanned, it supports active SETI. The model is compared with simulations, and the possible actions are evaluated through the San Marino scale, measuring the risks of messaging. © 2012 Cambridge University Press. Source

Guo Y.,CAS Wuhan Institute of Physics and Mathematics | Seiringer R.,IST Austria
Letters in Mathematical Physics | Year: 2014

We consider two-dimensional Bose-Einstein condensates with attractive interaction, described by the Gross-Pitaevskii functional. Minimizers of this functional exist only if the interaction strength a satisfies a < a* = {double pipe}Q{double pipe}2 2, where Q is the unique positive radial solution of Δu - u + u3 = 0 in ℝ. We present a detailed analysis of the behavior of minimizers as a approaches a*, where all the mass concentrates at a global minimum of the trapping potential. © 2013 The Author(s). Source

Maitre J.-L.,EMBL | Heisenberg C.-P.,IST Austria
Current Biology | Year: 2013

Cadherins are transmembrane proteins that mediate cell-cell adhesion in animals. By regulating contact formation and stability, cadherins play a crucial role in tissue morphogenesis and homeostasis. Here, we review the three major functions of cadherins in cell-cell contact formation and stability. Two of those functions lead to a decrease in interfacial tension at the forming cell-cell contact, thereby promoting contact expansion - first, by providing adhesion tension that lowers interfacial tension at the cell-cell contact, and second, by signaling to the actomyosin cytoskeleton in order to reduce cortex tension and thus interfacial tension at the contact. The third function of cadherins in cell-cell contact formation is to stabilize the contact by resisting mechanical forces that pull on the contact. © 2013 Elsevier Ltd. Source

Discover hidden collaborations