Time filter

Source Type

Monfared V.,Islamic Azad University at Zanjan | Mondali M.,Islamic Azad University at Tehran
Materials and Design | Year: 2014

In this research work, semi-analytical method (SAM) is presented to predict composite creep strain rate and quasi shear-lag (QSL) formulation directly, as well as, finite element method (FEM) is employed for predicting partial creep debonding at the interface in steady state creep of short fiber composites under tensile axial stress. Also, new formulation QSL is introduced to obtain the average axial stress in fiber which its results are similar to the results of shear lag (SL) model. Then, it is shown that FEM can approximately predict the partial debonding in some regions of the interface. As a result, interfacial debonding can be caused by high tensile axial and circumferential stresses, high shear and equivalent stresses, and low compressive radial stresses with considering stress concentration. The results obtained from SAM are in good agreement with the available experimental results. Finally, it is concluded that FEM simulation can be useful for predicting some defects such as interfacial debonding and also better designing the fibrous composites. © 2013 Elsevier Ltd.

Mirabi P.,Islamic Azad University at Zanjan | Mojab F.,Shahid Beheshti University of Medical Sciences
Iranian Journal of Pharmaceutical Research | Year: 2013

Hot flash is among the most common complaints of menopausal women, affecting their career, social activities and quality of life. This study aimed to investigate the effects of Valerian on hot flashes in menopausal women. In this double blind clinical trial, 68 menopausal women with the chief complaint of hot flash were enrolled using sampling at hand and were randomly divided into drug and placebo groups. The women in the drug group were prescribed 255 mg Valerian capsules 3 times a day for 8 weeks. The women in the placebo group were prescribed identical capsules filled with starch. Then, severity and frequency of hot flashes were measured and recorded through questionnaires and information forms in three levels (2 weeks before, four and eight weeks after the treatment). The Severity of hot flashes revealed a meaningful statistical difference pre-and post- Valerian treatment (p <0.001) while this difference was not meaningful in the placebo group. Further, the comparison of the two groups regarding the severity of hot flash after the treatment showed a meaningful statistical difference (p <0.001). Valerian has also led to a reduction of hot flash frequencies 4 and 8 weeks after the treatment (p <0.001) but this difference was not meaningful in drug like group. Valerian can be effective in treatment of menopausal hot flash and that it can be considered as a treatment of choice for reduction of hot flashes among the women who are reluctant to receive hormone therapy due to fear or any other reason. © 2013 by School of Pharmacy.

Rails fracture by the growth of fatigue crack or critical crack is one of the prevalent defects in railway. The rail fracture, failure and analysis of stress should be studied to prevent rail fracture and events. In this paper, new formulation of contact stress for two rolling bodies is presented, and its results are close to the hertz stress formulation. The analysis of stress is done by Finite Element Model (FEM) and it is compared with hertz stress and new stress formulation results. Then, the analysis of stress, fracture, prediction of fracture and path of crack motion in rail and wheel are studied, statically which plays an important role in this field. The methods of analysis of stress theory fracture with numerical and FEM are compared and consequently, it was proved that these approaches have acceptable results compared with other results. So we can rely on these methods and their results. The relation between maximum displacement and maximum stress is presented, and the path of crack growth and fracture is predicted. To analyze the pressure of collection of the wheel and rail instead of elliptical contact surface, quadrant of elliptical contact surface is assumed. With this assumption, acceptable results will be attained. ©2011 Academic Journals.

Monfared V.,Islamic Azad University at Zanjan
Research Journal of Applied Sciences, Engineering and Technology | Year: 2012

A new mathematical model based on the exponential, logarithmic and polynomial (mixed) functions is presented for determination of some unknowns such as displacement rate in outer surface of unit cell and strain rate of short fiber (whisker) composites with elastic fiber in steady state creep under axial loading. In addition, effective factor or effect coefficient is introduced for determination of creep displacement rate in outer surface. Also, radial, axial displacement rates, equivalent and shear stresses will be determined by new method. Aim of this study is using the mathematical modeling instead of time consuming and costly experimental methods. On the other hand, unknowns are determined by polynomial, exponential and logarithmic functions instead of some theories, simply. These analytical results are then validated by the Finite Element Analysis (FEA). Interestingly, good agreements are found between analytical and numerical predictions for creep strain rate and displacement rate. © Maxwell Scientific Organization, 2012.

Stress behavior in short fiber composites under axial tensile stress is predicted based on well-behaved displacement rates in the steady state creep using imaginary fiber technique. This analysis is performed without using shear-lag model and other complex theories in non-reinforced regions of the short fiber composites. Direct analytical method (DAM) is presented to obtain the composite creep strain rate and stress behavior. Because of many applications of silicon carbide fiber SiC/Al6061 composites, stress analysis of this composite is done. Good agreements are found between the obtained present analytical and finite element method (FEM) results. Some important applications of the present comprehensive method are in the fields of the safe composite design and control of creeping composites in order to prevent the creep rupture. Also, present method is simple and accurate, unlike costly, difficult and time-consuming experimental methods. ©2015 Elsevier Ltd. All rights reserved.

Ramazani A.,Islamic Azad University at Zanjan | Kazemizadeh A.R.,Islamic Azad University at Zanjan
Current Organic Chemistry | Year: 2011

Triphenylphosphine (TPP), dialkyl acetylenedicarboxylates (DAAD), and acids such as phenols, imides, amides, enols, oximes and alcohols react with each other via a multicomponent reaction to produce stabilized phosphorus ylides. The reactions take place easily, through formation of intermediate formed by the Michael addition of the triphenylphosphine to dialkyl acetylenedicarboxylates and concomitant protonation of the intermediate by an acid leads to vinyltriphenylphosphonium salts. The salts are unstable intermediates and undergo a subsequent Michael addition leads to stabilized phosphorus ylides. In some cases ylide products are stable, but in other cases they cannot be isolated and appear to occur as intermediates on the pathway to an observed product. The stabilized phosphorus ylides are able to take part in the normal intramolecular Wittig reactions and produce a variety of heterocyclic or carbocyclic compounds, but they are not able to participate in the intermolecular Wittig reactions. © 2011 Bentham Science Publishers.

Tabari H.,Islamic Azad University at Āmol | Aghajanloo M.-B.,Islamic Azad University at Zanjan
International Journal of Climatology | Year: 2013

The knowledge of aridity is needed to explain landscape characteristics and the rational utilization of water resources. With global warming, an increase in aridity is expected for many parts of the world. This study was undertaken to analyse monthly and annual aridity index (IA), utilizing ratio of precipitation (P) over reference evapotranspiration (ETo), at ten stations located in critical agricultural regions in Iran. The Kendall and Spearman tests with considering serial correlation effect were used for analysis. An increase in aridity, as the P/ETo index decreased, was found during the study period, and the increase was more obvious in the semi-arid region of Iran than in the humid region. The increase of aridity was caused by the concurrent occurrences of negative P trends and positive ETo trends. The results indicated the lowest numbers of the negative IA trends in the July series and the highest numbers in the January, February and March series. According to the Theil-Sen's estimator, the annual P of the semi-arid and humid regions decreased at the average rates of (-)22.87 and (-)6.24 mm year-1 per decade respectively, whereas the annual ETo values in the semi-arid and humid regions increased by (+)11.42 and (+)6.82 mm year-1 per decade, respectively. © 2012 Royal Meteorological Society.

Kazemizadeh A.R.,Islamic Azad University at Zanjan | Ramazani A.,Islamic Azad University at Zanjan
Current Organic Chemistry | Year: 2012

Passerini reaction involving an oxo component, an isocyanide, and a nucleophile in a single step to prepare α-acyloxy carboxamide, was first discovered by Passerini about 90 years ago. Various modifications of this reaction have already been developed such as Lewis acids catalysis, in situ oxidation of alcohols to aldehydes, in situ oxidation of aldehydes to carboxylic acids, direct alkylative Passerini reaction, etc. The Passerini reaction has developed in organic synthesis, the total synthesis of natural products, synthesis of polycyclics, macrocycles, heterocycles and pharmaceutical industry for the synthesis of drug-like compounds. The Passerini products could be later cyclized by another type of ring-closing reaction. The aim of this review is to provide an overview of synthetic applications of Passerini reaction. © 2012 Bentham Science Publishers.

Monfared V.,Islamic Azad University at Zanjan
Applied Composite Materials | Year: 2016

Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results. © 2016 Springer Science+Business Media Dordrecht

Monfared V.,Islamic Azad University at Zanjan
Composites Science and Technology | Year: 2015

A novel analytical method is developed for predicting steady state creep of short fiber composites using shear-lag theory, imaginary fiber technique and polynomial displacement functions. Also, this method employs equilibrium and constitutive equations. Polynomial displacement method (PDM) is a new insight for analysis of plasticity and elasticity problems which can be used as a simple, exact and general method. PDM is more accurate than the available methods. Important novelties of the PDM are determination of unknowns such as shear stresses and displacement rates on top of the fiber analytically. In this paper, all unknowns are obtained by well-behaved polynomial displacement functions. These functions satisfy incompressibility and boundary conditions. In spite of the previous researches, strain rates and stresses are analytically obtained by PDM without non-analytical assumptions. Also, suitable agreements are found among present analytical method, numerical (FEM) and available published results. © 2014 Elsevier Ltd.

Loading Islamic Azad University at Zanjan collaborators
Loading Islamic Azad University at Zanjan collaborators