Time filter

Source Type

Uppsala, Sweden

Reimer J.M.,Uppsala University | Reimer J.M.,ISCONOVA AB | Samollow P.B.,Texas A&M University | Hellman L.,Uppsala University
Immunogenetics | Year: 2010

Activated mast cells release a number of potent inflammatory mediators including histamine, proteoglycans, cytokines, and serine proteases. The proteases constitute the majority of the mast cell granule proteins, and they belong to either the chymase or the tryptase family. In mammals, these enzymes are encoded by two different loci, the mast cell chymase and the multigene tryptase loci. In mice and humans, a relatively large number of tryptic enzymes are encoded from the latter locus. These enzymes can be grouped into two subfamilies, the group 1 tryptases, with primarily membrane-anchored enzymes, and the group 2 tryptases, consisting of the soluble mast cell tryptases. In order to study the appearance of these enzymes during vertebrate evolution, we have analyzed the dog, cattle, opossum, and platypus genomes and sought orthologues in the genomes of several bird, frog, and fish species as well. Our results show that the overall structure and the number of genes within this locus have been well conserved from marsupial to placental mammals. In addition, two relatively distantly related group 2 tryptase genes and several direct homologues of some of the group 1 genes are present in the genome of the platypus, a monotreme. However, no direct homologues of the individual genes of either group 1 or 2 enzymes were identified in bird, amphibian, or fish genomes. Our results indicate that the individual genes within the multigene tryptase locus, in their present form, are essentially mammal-specific. © 2010 Springer-Verlag.

Ahlberg V.,Swedish University of Agricultural Sciences | Lovgren Bengtsson K.,ISCONOVA AB | Wallgren P.,National Veterinary Institute | Fossum C.,Swedish University of Agricultural Sciences
Developmental and Comparative Immunology | Year: 2012

ISCOM vaccines induce a balanced Th1/Th2 response, long-lasting antibody responses and cytotoxic T lymphocytes. The mode of action for the adjuvant component, the ISCOM-Matrix, is known to some extent but questions remain regarding its mechanism of action. The Affymetrix GeneChip® Porcine Genome Array was applied to study the global transcriptional response to ISCOM-Matrix in pigs at the injection site and in the draining lymph node 24. h after i.m. injection. Gene enrichment analysis revealed inflammation, innate immunity and antigen processing to be central in the ISCOM-Matrix response. At the injection site, 594 genes were differentially expressed, including up-regulation of the cytokines osteopontin (SPP1), IL-10 and IL-18 and the chemokines CCL2, CCL19 and CXCL16. Of the 362 genes differentially expressed in the lymph node, IL-1β and CXCL11 were up-regulated whereas IL18, CCL15 and CXCL12 were down-regulated. ISCOM-Matrix also modulated genes for pattern recognition receptors at the injection site (TLR2, TLR4, MRC1, PTX3, LGALS3) and in the lymph node (TLR4, RIG-I, MDA5, OAS1, EIF2AK2, LGALS3). A high proportion of up-regulated interferon-regulated genes indicated an interferon response. Thus, several genes, genetic pathways and biological processes were identified that are likely to shape the early immune response elicited by ISCOM-based vaccines. © 2012 Elsevier Ltd.

Andreasson S.,ISCONOVA AB
Expert Review of Vaccines | Year: 2013

Interview by Jenaid Rees, Commissioning Editor Sven Andréasson has held the position of CEO for both pharmaceutical and biotech companies for many years; he was the President and CEO of Active Biotech AB (Sweden) between 1999 and 2008, CEO of Beta-Cell NV (Belgium) until 2012 and currently works as CEO of Isconova AB (Sweden). Prior to this, he held several senior management positions within the international pharmaceutical industry. Andréasson has also held a number of board positions over the years, currently, serving on the boards of Cellastra Inc (CA, USA), Erytech SA (France) and XImmune AB (Sweden). © 2013 Informa UK Ltd.

Isconova Ab | Date: 2010-07-09

The invention relates to a composition comprising at least one ISCOM complex and at least one internal antigen which is not a surface antigen and not in the form of a part of a whole micro-organism. The internal antigen may be a nucleoprotein or presented as a member of the group of components obtained after disintegrating a micro-organism. The ISCOM complex may be an ISCOM or ISCOM matrix complex. The composition may also comprise non internal antigens. The invention also elates to the composition for use as an immune stimulating medicine or vaccine, especially for use in eliciting T cell respond including CTL respond. The invention also relate to a composition comprising at least one ISCOM complex for use as an immune stimulating or immune modulating medicine or vaccine for the stimulation of dendritic ceils in elderly. Further, the invention relates to a process for preparing a composition wherein a saponin, cholesterol and a lipid are mixed with a lysed cell suspension of cells and solubilising agent without removal of any cell components, where after the solubilising agent is removed or diluted. It also relates to a kit.

Iscom particles can be used as an adjuvant for preparing of an antigenic composition which comprises live micro-organisms and/or killed micro-organisms and/or antigenic molecules. A composition may comprise at least one iscom particle and one or more live micro-organisms and/or killed micro-organisms and/or antigenic molecules. A kit can comprise at least one compartment containing at least one living organism and at least one compartment containing at least one iscom particle.

Discover hidden collaborations