Sagamihara, Japan
Sagamihara, Japan

Time filter

Source Type

News Article | January 14, 2016
Site: phys.org

On 12 January 2016, the Japan Aerospace Exploration Agency (JAXA) presented their ASTRO-H satellite to the media at the Tanegashima Space Center, situated on a small island in the south of Japan. The satellite, developed with institutions in Japan, the US, Canada and Europe, is now ready to be mounted on an H-IIA rocket for launch on 12 February. ASTRO-H is a new-generation satellite, designed to study some of the most powerful phenomena in the Universe by probing the sky in the X-ray and gamma-ray portions of the electromagnetic spectrum. Scientists will investigate extreme cosmic environments ranging from supernova explosions to supermassive black holes at the centres of distant galaxies, and the hot plasma permeating huge clusters of galaxies. ESA contributed to ASTRO-H by partly funding various elements of the four science instruments, by providing three European scientists to serve as science advisors and by contributing one scientist to the team in Japan. In return for ESA's contribution, European scientists will have access to the mission's data. Traditionally, Japan's astronomy satellites receive a provisional name consisting of the word 'ASTRO' followed by a letter of the latin alphabet – in this case H, because it is the eighth project in JAXA's astronomical series. JAXA will announce the new name after launch. ASTRO-H is a new-generation satellite for high-energy astrophysics, developed by the Japan Aerospace Exploration Agency (JAXA) in collaboration with institutions in Japan, the US, Canada, and Europe. Its four instruments span the energy range 0.3-600 keV, including soft X-rays, hard X-rays and soft gamma rays. ESA's contribution consists in funding the procurement of a number of items on the various instruments, three European scientists who will serve as advisors to the mission's core science programme, and one full-time scientist based at the Institute of Space and Astronautical Science (ISAS), Japan, to support in-flight calibration, science software testing and data analysis. Support to European users will be provided by scientists at ESA's European Space Astronomy Centre in Madrid, Spain, and at the European Science Support Centre at the ISDC Data Centre for Astrophysics, University of Geneva, Switzerland. Explore further: Japan launches satellite for better GPS coverage (Update)


News Article | February 15, 2017
Site: www.eurekalert.org

Scientists at VIB-KU Leuven have identified a new mechanism that impacts tumor growth. The typical lack of oxygen in tumors doesn't only stimulate proliferation, but also offsets the important role of the protein PHD2 as 'cancer cell killer'. A possible solution lies in blocking the enzyme PP2A/B55, which restores the function of PHD2 and consequently slows down cancer growth. The research, led by prof. Massimiliano Mazzone (VIB-KU Leuven), is published in the leading scientific journal Cell Reports. Poor prognosis in cancer is typically correlated with hypoxia, a disturbance in the oxygen supply to the tumor cells. The protein PHD2 is known as a 'hypoxic sensor', as its function is highly dependent on the amount of oxygen. In the VIB-KU Leuven Center for Cancer Biology, Dr. Giusy Di Conza and colleagues, led by prof. Massimiliano Mazzone, focused on the phosphorylation -- the addition of a phosphate group -- of this protein. When phosphorylated, PHD2 is more active, promoting the death of cancer cells in the low-oxygen areas of the tumor. However, tumors tend to overexpress the phosphatase PP2A/B55, an enzyme that removes the phosphate group ('dephosphorylation') from PHD2. As a result, PHD2 is partially inactivated, which offsets the positive effects of this 'cancer cell killer'. Prof. Massimiliano Mazzone (VIB-KU Leuven): "Surprisingly, we found that the phosphorylation status of PHD2 is regulated by pathways such as mTOR, which in tumor and normal cells represents the main sensor of metabolic stresses such as lack of nutrients or growth factors. This means that our findings might be applied not only to cancer but also to other diseases, such inflammatory or metabolic diseases." During the research, prof. Mazzone's lab collaborated closely with several domestic and foreign researchers. In particular, the German ISAS lab (Dortmund) and the Leuven University Hospital played decisive roles, with the latter providing the human cancer samples necessary for the research. In these samples, the researchers discovered high expressions of PP2A/B55 in tumors compared to healthy tissues. Prof. Massimiliano Mazzone (VIB-KU Leuven): "This leads us to the conclusion that PP2A/B55 is a promising potential target for cancer therapy. That is why we started working together with an interested partner to study the potential of specific drugs against PP2A/B55. The ultimate goal is to design molecules that block the function of this phosphatase, thereby fighting cancer in a targeted way." On top of new cancer treatment perspectives, these findings may also lead to new biomarkers: the phosphorylation status of PHD2 might be instrumental to understanding a tumor's transformation process and, consequently, to select the appropriate treatment. Prof. Massimiliano Mazzone (VIB-KU Leuven): "To fully understand all the ins and outs of these processes, we also need to take a closer look at the tumor microenvironment and the immune system. After all, they strongly impact tumor growth. As we speak, we are defining the role of PP2A/B55 in both the tumor microenviro


News Article | February 15, 2017
Site: www.eurekalert.org

CHAMPAIGN, Ill. -- A new study contradicts decades of thought, research and teaching on the history of corn cultivation in the American Bottom, a floodplain of the Mississippi River in Illinois. The study refutes the notion that Indian corn, or maize, was cultivated in this region hundreds of years before its widespread adoption at about 1000 A.D. The findings, reported in the journal American Antiquity, are important in understanding how and why Cahokia, the first major metropolitan center in North America, arose, said Thomas Emerson, the director of the Illinois State Archaeological Survey at the University of Illinois, where the new study was conducted. Cahokia was a vast, highly organized settlement with tens of thousands of inhabitants in its heyday, Emerson said. Its dramatic rise near present-day St. Louis and East St. Louis, Illinois, at about A.D. 950 and its sudden demise by 1350 have long been a source of fascination. There is broad agreement that corn was cultivated in this region at about 1000 and widely consumed by the people of this time period, Emerson said. Corn fragments, including cobs and kernels, show up in sites dating to 1000 or later. Skeletal analyses from bodies buried at Cahokia also reveal the devastating impact of corn on people's teeth. These signs, as well as chemical signatures of corn consumption in the teeth and bone, also date to 1000 and after, he said. The new findings challenge earlier reports that maize was cultivated and consumed in the American Bottom as early as 60 years B.C. The early conclusions - in studies conducted before 2000 - were based on flawed approaches to analyzing ancient materials, said Mary Simon, an archaeobotanist with ISAS who conducted the new study. Rather than dating charred plant fragments directly, researchers analyzed charcoal or other "associated materials" to determine the age of the plants, she said. "We have since learned that a piece of charcoal or other material found adjacent to a corn kernel in an archaeological site could date to a later or earlier time period than the corn," Simon said. Also, visual identifications can be wrong, she said. Scientists now date plant fragments directly using accelerated mass spectrometry, a technology that was just "coming into vogue in the 1990s" and used at that time to determine the age of materials, Simon said. Today, stable isotope mass spectrometry can be used in conjunction with AMS to detect differences between plant types, information that aids in plant identification, she said. Corn and other grasses absorb atmospheric carbon differently than other plants. This is reflected in the ratio of carbon isotopes - carbon atoms with differing masses - in plant tissues, Simon said. "The beauty of this procedure is not only do you get an absolute date, you also get that carbon isotope ratio, so you know, first, how old it is, and, second, whether or not it's corn," she said. In the new study, Simon revisited botanical samples from Holding, an archaeological site in western Illinois that was occupied from about 150 B.C. to A.D. 300. Simon was among those who mistakenly identified plant fragments from this site as very early corn, and later AMS data confirmed its age. Those findings were published by a group of archaeologists in 1994, and were widely recognized as being the oldest directly dated corn in the eastern United States. The new analysis, of remaining botanical samples from the Holding site, used both AMS and SIMS and found that the samples that looked like corn either were not corn or dated to A.D. 900 or later, Simon said. Researchers at Arizona State University found samples from the original study and also tested those for carbon isotope ratios. Their results confirmed that although it was old, the material dated in 1994 was not, in fact, corn. "Basically, what we found is that myths of early corn in the central Mississippi River Valley are simply inaccurate. They've been disproved. We no longer believe that corn was at all important, that people were growing corn, that anybody was using corn to any extent at A.D. zero," Simon said. The two new studies suggest that corn was not in widespread use until 900 or later, she said. "You can never say it wasn't present here before then," she said. "For example, there was Wyoming obsidian here at A.D. 60, so it's totally possible that a cob of corn made it here from the southwestern U.S. at an earlier date. But, until it was cultivated here, it doesn't really count." The ISAS is a division of the Prairie Research Institute at the U. of I. The paper "Reevaluating the evidence for middle woodlands maize from the Holding site" is available online and from the U. of I. News Bureau.


THORNTON, CO--(Marketwired - Dec 7, 2016) - Ascent Solar Technologies, Inc. (OTCBQ: ASTI), a developer and manufacturer of state-of-the-art, lightweight and flexible thin-film photovoltaic (PV) solutions, announces that the Company was selected by the Japan Aerospace Exploration Agency (JAXA) as part of their next round of evaluations for providing solar technology for an upcoming mission to Jupiter, as well as to address additional missions. This decision followed an earlier round of investigation with promising results, during which the Company's flexible, monolithically integrated copper-indium-gallium-selenide (CIGS) solar module was subjected to environmental extremes, and continued to operate well. During the first phase of JAXA's evaluation, Ascent's PV was successfully tested below -146°C (-231°F) and up to +190°C (+374 °F), and to only 4% of the sunlight generally received in earth's orbit. In addition, JAXA has also subjected Ascent's PV to radiation and mechanical testing. "JAXA's Jovian mission is a testament to the advancements being made in orbit, both in terms of its objectives, as well as the extremes in which the vehicle is required to operate," stated Dr. Joseph Armstrong, Chief Technology Officer and founder of Ascent Solar. "Missions of this type traditionally use fragile crystalline solar cells that require additional structure for protection. Our lightweight, flexible technology can take advantage of novel array construction that provide higher performance in a more economical package. JAXA has decided to investigate lower-cost flexible thin-film solar technology in conjunction with a solar sail concept that was first demonstrated on their IKAROS project in 2010. Our PV will be used in conjunction with a solar sail design that would provide both propulsion, as well as lightweight electrical power for the mission." A link to the webpage describing the IKAROS (Interplanetary Kite-craft Accelerated by Radiation of the Sun) mission can be found here: http://www.isas.jaxa.jp/e/enterp/missions/ikaros/index.shtml "We are very honored to be selected to work with JAXA in anticipation of the upcoming mission," said Victor Lee, President and CEO of Ascent Solar. "Interest from JAXA in our unique flexible CIGS PV product for high-performance aerospace applications is encouraging, as we believe it will increase awareness of what Ascent's PV has to offer in this challenging aerospace market." JAXA intends to leverage their existing solar sail technology with lightweight solar components to combine both solar propulsion and solar power generation. As stated by the JAXA Solar Power Sail Team, "We want to develop innovative spacecraft systems with lightweight PV and pave the way for economical high-performance deep space missions." Ascent Solar Technologies, Inc. is a developer of thin-film photovoltaic modules using flexible substrate materials that are more versatile and rugged than traditional solar panels. Ascent Solar modules were named as one of the top 100 technologies in both 2010 and 2015 by R&D Magazine, and one of TIME Magazine's 50 best inventions for 2011. The technology described above represents the cutting edge of flexible power and can be directly integrated into consumer products and off-grid applications, as well as other aerospace applications. Ascent Solar is headquartered in Thornton, Colorado. More information can be found at www.ascentsolar.comand www.enerplex.com. The Japan Aerospace Exploration Agency (JAXA) was born through the merger of three institutions, namely the Institute of Space and Astronautical Science (ISAS), the National Aerospace Laboratory of Japan (NAL) and the National Space Development Agency of Japan (NASDA). It was designated as a core performance agency to support the Japanese government's overall aerospace development and utilization. JAXA, therefore, can conduct integrated operations from basic research and development, to utilization. More information can be found at http://global.jaxa.jp Statements in this press release that are not statements of historical or current fact constitute "forward-looking statements." Such forward-looking statements involve known and unknown risks, uncertainties and other unknown factors that could cause the Company's actual operating results to be materially different from any historical results or from any future results expressed or implied by such forward-looking statements. In addition to statements that explicitly describe these risks and uncertainties, readers are urged to consider statements that contain terms such as "believes," "belief," "expects," "expect," "intends," "intend," "anticipate," "anticipates," "plans," "plan," to be uncertain and forward-looking. The forward-looking statements contained herein are also subject generally to other risks and uncertainties that are described from time to time in the Company's filings with the Securities and Exchange Commission.


Phan T.D.,University of California at Berkeley | Paschmann G.,Max Planck Institute for Extraterrestrial Physics | Gosling J.T.,University of Colorado at Boulder | Oieroset M.,University of California at Berkeley | And 3 more authors.
Geophysical Research Letters | Year: 2013

We have performed a statistical study of THEMIS spacecraft crossings of the asymmetric dayside magnetopause to test the prediction that the diamagnetic drift of the X-line due to a plasma pressure gradient across the magnetopause can suppress magnetic reconnection. The study includes crossings both when reconnection exhausts were present and when they were absent in the current sheet. When we restrict the survey to the subsolar region (10 < MLT < 14), we find that for low Δβ (the difference of plasma β on the two sides of the current sheet) the majority of reconnection events occurred over a large range of magnetic shears, whereas when Δβ was high reconnection events occurred only for high shears. Furthermore, nonreconnection events occurred primarily in the Δβ-shear regime in which reconnection is predicted to be suppressed, in good agreement with theory. The Δβ-shear condition should have general consequences for the occurrence of reconnection in space and laboratory plasmas. © 2013. American Geophysical Union. All Rights Reserved.


Phan T.D.,University of California at Berkeley | Shay M.A.,University of Delaware | Gosling J.T.,University of Colorado at Boulder | Fujimoto M.,ISAS | And 5 more authors.
Geophysical Research Letters | Year: 2013

We surveyed 79 magnetopause reconnection exhausts detected by the THEMIS spacecraft to investigate how the amount and anisotropy of electron bulk heating produced by reconnection depend on the inflow boundary conditions. We find that the amount of heating, ΔTe, is correlated with the asymmetric Alfvén speed, VAL,asym, based on the reconnecting magnetic field and the plasma density measured in both the high-density magnetosheath and low-density magnetospheric inflow regions. Best fit to the data produces the empirical relation ΔTe = 0.017 miV AL,asym 2, indicating that the amount of heating is proportional to the inflowing magnetic energy per proton-electron pair, with ∼1.7% of the energy being converted into electron heating. This finding, generalized to symmetric reconnection, could account for the lack of electron heating in typical solar wind exhausts at 1 AU, as well as strong heating to keV energies common in magnetotail exhausts. We also find that the guide field suppresses perpendicular heating. Key Points Electron bulk heating controlling factors revealed Heating depends on the total incoming magnetic energy per particle 1.7% of magnetic energy is converted into electron bulk heating ©2013. American Geophysical Union. All Rights Reserved.


News Article | October 13, 2016
Site: www.materialstoday.com

A sponge-like structure made from carbon nanotubes could be the ideal scaffold to help damaged neural tissue regenerate, according to researchers [Usmani et al., Sci. Adv. 2 (2016) e1600087]. The team from the International School for Advanced Studies (SISSA/ISAS) in Trieste, together with colleagues from the University of Trieste, ELETTRA Synchrotron Light Source, the University of Rome Tor Vergata, CIC biomaGUNE in San Sebastian and Ikerbasque in Bilbao created a three-dimensional mesh from interconnected multiwalled carbon nanotubes. When spinal cord tissue is introduced into the scaffold, the carbon nanotubes guide the formation of nerve fibers. Crucially, the nerve fibers intertwine with the carbon nanotubes creating a hybrid structure. “The nerves integrate perfectly with the carbon nanotube scaffold, leading to a very promising hybrid,” explains Maurizio Prato of the University of Trieste, CIC biomaGUNE and Ikerbasque. Without a scaffold, nerve fibers regrow in all directions – not necessarily bridging a gap between damaged sections. But when a piece of the carbon nanotube sponge is inserted into the space between the two segments of severed spinal tissue, the situation is completely different. The nerve fiber-carbon nanotube mesh hybrid material directs the cells to reconnect separated segments of spinal tissue. “We show... the spontaneous formation of webs of nerve fibers invading and following the nanotube structure,” says Prato. But a simple physical connection is not enough – there must also be a functional connection between the two groups of neurons so that signals can be passed along. “With signal analysis techniques, we demonstrate that spontaneous nervous activity in the two samples [is] correlated, indicating a connection, and by applying an electrical signal to one sample, activity of the second sample can be triggered – but only when the nanotubes are present,” explains colleague David Zoccolan. The team also tested how the body’s immune system reacts to the carbon nanotube scaffold by implanting samples of the pure material into rats’ brains. After an initial inflammatory response, there was no sign of further adverse tissue reactions. But better than that,the researchers found neurons inside the implanted scaffold indicating that the approach is promising for central nervous system repair and regeneration. “We show a perfect integration of nerve tissues with an artificial scaffold,” says Prato. “The compatibility of this new material is impressive and could lead to alternative solutions to still unsolved problems.” Those problems could include the treatment of movement disorders like Parkinson’s, where implanted electrodes stimulate neural tissue to recover or rehabilitate lost function. The new carbon nanotube mesh could be used to coat these electrodes to encourage their acceptance by the body. This article was originally published in Nano Today (2016), doi:10.1016/j.nantod.2016.08.004


Shay M.A.,University of Delaware | Phan T.D.,University of California at Berkeley | Haggerty C.C.,University of Delaware | Fujimoto M.,ISAS | And 4 more authors.
Geophysical Research Letters | Year: 2016

Kinetic particle-in-cell simulations are used to identify signatures of the electron diffusion region (EDR) and its surroundings during asymmetric magnetic reconnection. A "shoulder" in the sunward pointing normal electric field (EN > 0) at the reconnection magnetic field reversal is a good indicator of the EDR and is caused by magnetosheath electron meandering orbits in the vicinity of the X line. Earthward of the X line, electrons accelerated by EN form strong currents and crescent-shaped distribution functions in the plane perpendicular to B. Just downstream of the X line, parallel electric fields create field-aligned crescent electron distribution functions. In the immediate upstream magnetosheath, magnetic field strength, plasma density, and perpendicular electron temperatures are lower than the asymptotic state. In the magnetosphere inflow region, magnetosheath ions intrude resulting in an Earthward pointing electric field and parallel heating of magnetospheric particles. Many of the above properties persist with a guide field of at least unity. © 2016. American Geophysical Union. All Rights Reserved.


Meyer C.,ISAS | Muller S.,ISAS | Gurevich E.L.,ISAS | Franzke J.,ISAS
Analyst | Year: 2011

The present review reflects the importance of dielectric barrier discharges in analytical chemistry. Special about this discharge is - and in contrast to usual discharges with direct current - that the plasma is separated from one or two electrodes by a dielectric barrier. This gives rise to two main features of the dielectric barrier discharges; it can serve as dissociation and excitation device and as ionization mechanism, respectively. The article portrays the various application fields for dielectric barrier discharges in analytical chemistry, for example the use for elemental detection with optical spectrometry or as ionization source for mass spectrometry. Besides the introduction of different kinds of dielectric barrier discharges used for analytical chemistry from the literature, a clear and concise classification of dielectric barrier discharges into capacitively coupled discharges is provided followed by an overview about the characteristics of a dielectric barrier discharge concerning discharge properties and the ignition mechanism. © 2011 The Royal Society of Chemistry.


News Article | February 15, 2017
Site: phys.org

The findings, reported in the journal American Antiquity, are important in understanding how and why Cahokia, the first major metropolitan center in North America, arose, said Thomas Emerson, the director of the Illinois State Archaeological Survey at the University of Illinois, where the new study was conducted. Cahokia was a vast, highly organized settlement with tens of thousands of inhabitants in its heyday, Emerson said. Its dramatic rise near present-day St. Louis and East St. Louis, Illinois, at about A.D. 950 and its sudden demise by 1350 have long been a source of fascination. There is broad agreement that corn was cultivated in this region at about 1000 and widely consumed by the people of this time period, Emerson said. Corn fragments, including cobs and kernels, show up in sites dating to 1000 or later. Skeletal analyses from bodies buried at Cahokia also reveal the devastating impact of corn on people's teeth. These signs, as well as chemical signatures of corn consumption in the teeth and bone, also date to 1000 and after, he said. The new findings challenge earlier reports that maize was cultivated and consumed in the American Bottom as early as 60 years B.C. The early conclusions - in studies conducted before 2000 - were based on flawed approaches to analyzing ancient materials, said Mary Simon, an archaeobotanist with ISAS who conducted the new study. Rather than dating charred plant fragments directly, researchers analyzed charcoal or other "associated materials" to determine the age of the plants, she said. "We have since learned that a piece of charcoal or other material found adjacent to a corn kernel in an archaeological site could date to a later or earlier time period than the corn," Simon said. Also, visual identifications can be wrong, she said. Scientists now date plant fragments directly using accelerated mass spectrometry, a technology that was just "coming into vogue in the 1990s" and used at that time to determine the age of materials, Simon said. Today, stable isotope mass spectrometry can be used in conjunction with AMS to detect differences between plant types, information that aids in plant identification, she said. Corn and other grasses absorb atmospheric carbon differently than other plants. This is reflected in the ratio of carbon isotopes - carbon atoms with differing masses - in plant tissues, Simon said. "The beauty of this procedure is not only do you get an absolute date, you also get that carbon isotope ratio, so you know, first, how old it is, and, second, whether or not it's corn," she said. In the new study, Simon revisited botanical samples from Holding, an archaeological site in western Illinois that was occupied from about 150 B.C. to A.D. 300. Simon was among those who mistakenly identified plant fragments from this site as very early corn, and later AMS data confirmed its age. Those findings were published by a group of archaeologists in 1994, and were widely recognized as being the oldest directly dated corn in the eastern United States. The new analysis, of remaining botanical samples from the Holding site, used both AMS and SIMS and found that the samples that looked like corn either were not corn or dated to A.D. 900 or later, Simon said. Researchers at Arizona State University found samples from the original study and also tested those for carbon isotope ratios. Their results confirmed that although it was old, the material dated in 1994 was not, in fact, corn. "Basically, what we found is that myths of early corn in the central Mississippi River Valley are simply inaccurate. They've been disproved. We no longer believe that corn was at all important, that people were growing corn, that anybody was using corn to any extent at A.D. zero," Simon said. The two new studies suggest that corn was not in widespread use until 900 or later, she said. "You can never say it wasn't present here before then," she said. "For example, there was Wyoming obsidian here at A.D. 60, so it's totally possible that a cob of corn made it here from the southwestern U.S. at an earlier date. But, until it was cultivated here, it doesn't really count." Explore further: Biomass producers can bring in cash while establishing switchgrass More information: Mary L. Simon, REEVALUATING THE EVIDENCE FOR MIDDLE WOODLAND MAIZE FROM THE HOLDING SITE, American Antiquity (2017). DOI: 10.1017/aaq.2016.2

Loading ISAS collaborators
Loading ISAS collaborators