Time filter

Source Type

About 2/3 of the rice consumed by European citizens is produced in EU, and its productivity is affected by abiotic and biotic stresses. Of particular concern, global temperature has increased over the last century, especially during the last 50 years (0.13 C / decade). One consequence has been a clear tendency toward salinization, which affects rice as one of the most salt sensitive crop in the region. Associated with changes in temperature and salinity, the biotic stress of the Apple snail species from genus Pomacea now threatens to destroy rice paddy fields eating the sown seed and the rice plantlets, representing one of the worst introduced gastropod crop pest of the recent time. It is calculated that nowadays this pest causes damages in rice fields worldwide that result into losses of tens of billions of Euros a year. Recently, apple snails have been detected in the Ebro river delta (Spain), and now it represents an important thread to Europes wetlands biodiversity and rice production. To date, the measures adopted to combat apple snail have failed, but in the autumn of 2013, 2500 ha of infested fields were flooded with sea water. This treatment proved 100% effective in destroying apple snail infestations, nevertheless residual salt concentrations affected negatively rice productivity. Thus, the general objective of the NEURICE project is to identify and introduce genetic variation in European rice varieties for obtaining commercial varieties tolerant to salinity in order to (i) mitigate the imminent effects of salinization and deterioration of water quality in the Mediterranean basins due to climate change, and (ii) to avoid the decline in production observed after seawater treatments performed in rice paddies that successfully controlled the apple snail pest. The availability of commercial salt tolerant rice lines will prevent the climate change derived abiotic stress while avoiding the dispersion of this devastating pest (biotic stress) all over Europe.


Grant
Agency: Cordis | Branch: H2020 | Program: BBI-IA-DEMO | Phase: BBI.VC3.D5-2015 | Award Amount: 15.54M | Year: 2016

Approximately one third of all food produced globally is wasted every year throughout the whole value chain-from farmers to consumers. To extract the significant amounts of valuable compounds contained in these wastes, AgriMax will combine affordable and flexible processing technologies (ultrasound assisted and solvent extraction, filtration, thermal and enzymatic treatments) for the valorization of side streams from the horticultural culture and food processing industry to be used in a cooperative approach by local stakeholders. Through the selection of case-scenarios previously developed to a pilot scale by the participating RTOs and their industrial transfer in new applications as food additives, packaging and agricultural materials among others, the project will disclose the holistic potential of four new agro-value chains (residues and by products from the culture and processing of tomato, cereals, olives, potato). Any by-product generated along the production cycle will be valorized in a cascade manner to reach over 40% of high value use of the waste. This will lead to additional production of active ingredients in lower concentration, but also fibres, biogas and fertilizers from the left biomass (the latter with the aim of being used in closed loop in the culture of the crops used in the project to prevent soil impoverishing). An LCA and LCC will also study the best approach to minimize the environmental impact of the new value chains without jeopardizing the cost effectiveness of the operations. The pilot multi-feedstock bio-refinery processes will be validated in two demonstration sites in Spain and Italy. Societal, ethical, safety, techno-feasibility and regulatory aspects will be studied. Last but not least, a business model and platform for communication between the potential raw materials suppliers will be set up to maximize the use of the cooperative treatment plants throughout the year.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: ISIB-02-2015 | Award Amount: 1.84M | Year: 2016

The European Fruit Network (EUFRUIT) includes 12 countries focussed on 4 thematic areas of critical for the competiveness and innovation potential of the European Fruit sector: i) new cultivar development and evaluation; ii) minimise residues on fruit and the environment; iii) optimising storage and fruit quality; iv) sustainable production systems. EUFRUIT will coordinate and support innovation through developing a framework for relevant stakeholders and it will establish a systematic approach for knowledge gathering and dissemination. The systematic approach includes: i) scanning & synthesis via 4 expert groups who scan state-of-art knowledge, practises and technologies and synthesise the material to identify key areas of learning and best practise approaches at a European level. ii) showing & sharing will deliver outreach/dialogue at a national level through establishment of local operational groups. An online Knowledge Platform will hold all outreach material, outreach activities include; 100 industry publications, 90 technical bulletins, 25 flyers/newsletters, 60 seminars, 160 field based meetings, 25 conference plus 12 events aimed at the general public. iii) sustaining the network will occur through long-term integration of the assembled EUFRUIT network in future actions. The overall outcome of EUFRUIT will be establishment of a framework and a systematic approach that together builds a bridge across the valley of death. This bridge will secure a direct path for new knowledge in the future and reduce the likelihood of repetition of research at a national level. The European fruit sector will have ready access to up-to-date information to implement and value will be created both for the industry with respect to competitiveness, sustainability and efficiency and society through ensuring the security and safety of fruit; underpinning human health and wellbeing.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SFS-10b-2015 | Award Amount: 5.41M | Year: 2016

The overarching goal of VIVALDI is to increase the sustainability and competitiveness of the European shellfish industry by improving the understanding of bivalve diseases and by developing innovative solutions and tools for the prevention, control and mitigation of the major pathogens affecting the main European farmed shellfish species: Pacific oyster (Crassostrea gigas), mussels (Mytilus edulis and M. galloprovincialis), European flat oyster (Ostrea edulis), clams (Venerupis philipinarum) and scallops (Pecten maximus ). The project addresses the most harmful pathogens affecting either one or more of these shellfish species: the virus OsHV-1, Vibrio species including V. aestuarianus, V. splendidus, V. harveyi and V. tapetis, as well as the parasite Bonamia ostreae. The project is committed to provide practical solutions based on the most advanced knowledge. VIVALDI will dissect the disease mechanisms associated with pathogen virulence and pathogenesis and host immune responses, develop in vivo and in vitro models, and apply omic approaches that will help the development of diagnostic tools and drugs against pathogen targets, and breeding programmes in a collaborative effort with industrial partners. The proposal will include a global shellfish health approach, recognising that cultured bivalves are often exposed to several pathogens simultaneously, and that disease outbreaks can be due to the combined effect of two or more pathogens. The proposal will also investigate advantages and risks of the used of disease-resistant selected animals in order to improve consumer confidence and safety. VIVALDI will be both multi- and trans-disciplinary. In order to cover both basic and applied levels from molecules to farm, the proposal will integrate partners with a broad range of complementary expertises in pathology and animal health, epidemiology, immunology, molecular biology, genetics, genomics and food safety.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: RUR-10-2016-2017 | Award Amount: 2.00M | Year: 2016

The European Union (EU) is the worlds second biggest producer of pigmeat and is the markets largest exporter. In order to maintain an economically viable and sustainable pig industry, innovation is a key factor. EU PiG specifically aims to more effectively connect producers with the latest science, husbandry techniques and technologies from within their industry via fellow producers, academics and advisors connected through thematic and regional platforms. A unique consortium of 19 organisations has been brought together, representing 13 Member States that together account for 92% of the EUs pig meat production and 89% of the EUs pig herd in 2014. The EU PiG consortium represents a wide range of actors, including national and regional pig producer groups, researchers, rural development boards, innovation practitioners and SMEs. EU PiG will provide a platform for dialogue for the actors, facilitating the exchange of knowledge and sharing of innovative best practice.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SC1-PM-22-2016 | Award Amount: 15.59M | Year: 2016

ZIKAlliance is a multidisciplinary project with a global One Health approach, built: on a multi-centric network of clinical cohorts in the Caribbean, Central & South America; research sites in countries where the virus has been or is currently circulating (Africa, Asia, Polynesia) or at risk for emergence (Reunion Island); a strong network of European and Brazilian clinical & basic research institutions; and multiple interfaces with other scientific and public health programmes. ZIKAlliance will addrees three key objectives relating to (i) impact of Zika virus (ZIKV) infection during pregnancy and short & medium term effects on newborns, (ii) associated natural history of ZIKV infection in humans and their environment in the context of other circulating arboviruses and (iii) building the overall capacity for preparedness research for future epidemic threats in Latin America & the Caribbean. The project will take advantage of large standardised clinical cohorts of pregnant women and febrile patients in regions of Latin America and the Caribbean were the virus is circulating, expanding a preexisting network established by the IDAMS EU project. I will also benefit of a very strong expertise in basic and environmental sciences, with access to both field work and sophisticated technological infrastructures to characterise virus replication and physiopathology mechanisms. To meet its 3 key objectives, the scientific project has been organised in 9 work packages, with WP2/3 dedicated to clinical research (cohorts, clinical biology, epidemiology & modeling), WP3/4 to basic research (virology & antivirals, pathophysiology & animal models), WP5/6 to environmental research (animal reservoirs, vectors & vector control) , WP7/8 to social sciences & communication, and WP9 to management. The broad consortium set-up allow gathering the necessary expertise for an actual interdisciplinary approach, and operating in a range of countries with contrasting ZIKV epidemiological status.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SFS-07a-2014 | Award Amount: 3.40M | Year: 2015

Research and development activities are proposed for the benefit of sustainable pork chains based on European local pig breeds and their production systems. Workprogramme is planned to respond to consumer demands for quality and healthiness of pork products with regional identity and societal demands for environment preservation and development of local agro-economy. Description and evaluation of local pig breeds, with an emphasis on untapped ones will be performed using novel genomic tools. Performance of local pig breeds will be evaluated in contrasted agro-geo-climatic conditions and production systems (indoor, outdoor, organic). Focus will be on pig feeding and management strategies and on the use of locally available feeding resources. Intrinsic quality of traditional and new regional high quality pork products and attitudes of consumers from various market areas will be assessed; in particular the motives for the choice and willingness to pay such products. Marketing strategies will be adressed in particular short chain distribution channels. All activities will be driven from the perspective of sustainability (environmental impact, animal welfare, product quality, consumer acceptability and market potential). The activities will engage innovative approaches to answer socio-economic demands of regional pork chains involving partners from different sectors. The ambition is to enhance existing and create new networks between academia and non-academia partners, within and between regions and to tackle the value chain for regional high quality pork products, focusing on diverse and so far untapped pig breeds, their production systems and pork products. Cross-fertilising interactions between research, local agriculture, businesses and end-users will be achieved with partners from these complementary sectors in all research and development activities.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SFS-01a-2014 | Award Amount: 9.93M | Year: 2015

Feed-a-Gene aims to better adapt different components of monogastric livestock production systems (i.e., pigs, poultry and rabbits) to improve the overall efficiency and to reduce the environmental impact. This involves the development of new and alternative feed resources and feed technologies, the identification and selection of robust animals that are better adapted to fluctuating conditions, and the development of feeding techniques that allow optimizing the potential of the feed and the animal. To reach this overall objective, the project will: - Develop new and alternative feeds and feed technologies to make better use of local feed resources, green biomass and by-products of the food and biofuel industry. - Develop methods for the real-time characterization of the nutritional value of feeds to better use and adapt diets to animal requirements. - Develop new traits of feed efficiency and robustness allowing identification of individual variability to select animals that are more adapted to changes in feed and environmental conditions. - Develop biological models of livestock functioning to better understand and predict nutrient and energy utilization of animals along their productive trajectory. - Develop new management systems for precision feeding and precision farming combining data and knowledge from the feed, the animal, and the environment using innovative monitoring systems, feeders, and decision support tools. - Evaluate the overall sustainability of new management systems developed by the project. - Demonstrate the innovative technologies developed by the project in collaboration with partners from the feed industry, breeding companies, equipment manufacturers, and farmers organisations to promote the practical implementation of project results. - Disseminate new technologies that will increase animal production efficiency, whilst maintaining product quality and animal welfare and enhance EU food security to relevant stakeholders.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: ISIB-02-2015 | Award Amount: 2.11M | Year: 2016

The Data Driven Dairy Decisions for Farmers (4D4F) thematic network will focus on the role which dairy animal and environmental sensors can play in collecting real time information to help make more informed decisions in dairy farming. The network will develop a Community of Practice comprised of farmers, farm advisors, technology suppliers, knowledge exchange professionals and researchers who will work together to debate, collect and communicate best practice drawn from innovative farmers, industry and the research community to facilitate the co-creation of best practice. The results will be communicated to farmers using best practice guides on the use of sensors and data analysis tools supported by videos, infographics and an online virtual warehouse of dairy sensor technologies. The network will include the development of Standard Operating Procedures (SOPs) which can be tailored to individual farms to help farmers and farm advisors adopt dairy sensor and data analysis technology. The SOPs will be developed by working groups of the Community of Practice including farmers, farm advisors, technology suppliers, knowledge exchange professionals and researchers, who will work together to develop farmer friendly SOPs. The on line Community of Practice and published communication tools will be complimented by on farm events and workshops to help farmers and farm advisors implement innovative sensor and data analysis technologies. The workshops and events will promote discussion between farmers and their peers on how best to use sensors and data analysis in their own businesses. This will lead to local peer to peer support to facilitate the adoption of data driven dairy decision making. The network will work closely with EIP Agri and at member state level it will work with existing EIP Operational Groups working on dairy data and sensors and, where suitable Operational Groups do not exist, it will work with local partners to develop new Operational Groups.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SFS-03b-2014 | Award Amount: 4.09M | Year: 2015

More sustainable pest management methods are needed in order to reduce the negative effects of pesticides on human health and the environment. The overall goal of EUCLID is to contribute to secure the production of food for the increasing worldwide population while developing sustainable production approaches to be used in the European and Chinese agriculture. The choice of the crops of interest in EUCLID, i.e. fresh tomatoes, table and wine grapes, and leafy vegetables (lettuces, cabbages, etc.), is based on their economic importance for both European and Chinese fruit and vegetable production, but also for their exemplarity in representing different production systems (field \ greenhouse vegetables and ligneous perennial). This means that the solutions of the project could be used models for developing similar actions for other crops. The project is structured in 3 R&D work packages (WP), one WP dedicated to demonstration in field, one for dissemination and a WP devoted to project management. The project will exploit the thorough knowledge developed in the last years on IPM to adapt and optimize those tools and approaches which did not reach the field/market (yet). In addition, the consortium will work on the further development of high potential innovation pest management solutions. The consortium has been selected in order to integrate in the research process, from the very beginning, the main end-users of the projects results: farmers associations, SMEs, economists, experts in policy. The consortium also has a good coverage of both European and Chinese experts, in order to take advantage of the experience of each region and to more efficiently adapt the pest management solutions to the specific problems of European and Chinese farmers.

Loading IRTA - Institute of Agricultural-Alimentary Research and Technology collaborators
Loading IRTA - Institute of Agricultural-Alimentary Research and Technology collaborators