Palembang, Indonesia
Palembang, Indonesia

Time filter

Source Type

Ladha J.K.,International Rice Research Institute | Rao A.N.,International Rice Research Institute | Raman A.K.,International Rice Research Institute | Padre A.T.,International Rice Research Institute | And 15 more authors.
Global Change Biology | Year: 2016

South Asian countries will have to double their food production by 2050 while using resources more efficiently and minimizing environmental problems. Transformative management approaches and technology solutions will be required in the major grain-producing areas that provide the basis for future food and nutrition security. This study was conducted in four locations representing major food production systems of densely populated regions of South Asia. Novel production-scale research platforms were established to assess and optimize three futuristic cropping systems and management scenarios (S2, S3, S4) in comparison with current management (S1). With best agronomic management practices (BMPs), including conservation agriculture (CA) and cropping system diversification, the productivity of rice- and wheat-based cropping systems of South Asia increased substantially, whereas the global warming potential intensity (GWPi) decreased. Positive economic returns and less use of water, labor, nitrogen, and fossil fuel energy per unit food produced were achieved. In comparison with S1, S4, in which BMPs, CA and crop diversification were implemented in the most integrated manner, achieved 54% higher grain energy yield with a 104% increase in economic returns, 35% lower total water input, and a 43% lower GWPi. Conservation agriculture practices were most suitable for intensifying as well as diversifying wheat-rice rotations, but less so for rice-rice systems. This finding also highlights the need for characterizing areas suitable for CA and subsequent technology targeting. A comprehensive baseline dataset generated in this study will allow the prediction of extending benefits to a larger scale. © 2016 John Wiley & Sons Ltd.


PubMed | Tamil Nadu Rice Research Institute, Bangladesh Agricultural Research Institute, Indian Agricultural Research Institute, University of Hohenheim and 9 more.
Type: Journal Article | Journal: Global change biology | Year: 2016

South Asian countries will have to double their food production by 2050 while using resources more efficiently and minimizing environmental problems. Transformative management approaches and technology solutions will be required in the major grain-producing areas that provide the basis for future food and nutrition security. This study was conducted in four locations representing major food production systems of densely populated regions of South Asia. Novel production-scale research platforms were established to assess and optimize three futuristic cropping systems and management scenarios (S2, S3, S4) in comparison with current management (S1). With best agronomic management practices (BMPs), including conservation agriculture (CA) and cropping system diversification, the productivity of rice- and wheat-based cropping systems of South Asia increased substantially, whereas the global warming potential intensity (GWPi) decreased. Positive economic returns and less use of water, labor, nitrogen, and fossil fuel energy per unit food produced were achieved. In comparison with S1, S4, in which BMPs, CA and crop diversification were implemented in the most integrated manner, achieved 54% higher grain energy yield with a 104% increase in economic returns, 35% lower total water input, and a 43% lower GWPi. Conservation agriculture practices were most suitable for intensifying as well as diversifying wheat-rice rotations, but less so for rice-rice systems. This finding also highlights the need for characterizing areas suitable for CA and subsequent technology targeting. A comprehensive baseline dataset generated in this study will allow the prediction of extending benefits to a larger scale.


News Article | December 2, 2016
Site: www.eurekalert.org

ITHACA, NY--Crop breeders in developing countries can now access free tools to accelerate the breeding of improved crops varieties, thanks to a collaboration between the GOBII project at Cornell University and the Boyce Thompson Institute (BTI), and the James Hutton Institute in Scotland. The collaboration works with breeding centers around the world to identify unmet needs and has developed tools to make the process of adding a trait into an existing, high-yield crop variety more efficient. Researchers at the International Maize and Wheat Improvement Center (CIMMYT) are using the tools to develop corn varieties with greater resistance to viruses. Researchers at GOBII, the Genomic and Open-source Breeding Informatics Initiative, worked with developers from the Hutton Institute to build upon the existing data visualization application, Flapjack. Its new tools enable breeders to select the best possible parental lines and help users to perform marker-assisted backcrossing (MABC)--a process that involves repeated breeding with the high-yield parent to ensure that only the desired genes are transferred. Researchers estimate that they can cut a year or two from the four or five years required to develop a new variety. "We have been delighted with this early success of our joint work with the GOBII team at Cornell and anticipate it will form the foundation of a mutually valuable partnership," said David Marshall of the Hutton Institute. Previously, these types of molecular breeding tools only existed within biotech companies. But GOBII, a Cornell-led project funded by the Bill & Melinda Gates Foundation, is tailoring these free tools for breeders in developing countries. They are building data management software in collaboration with the international crops research centers ICRISAT in India, CIMMYT in Mexico and IRRI in the Philippines. "Having the right data management systems and analysis tools can have a huge impact on crop improvement. Breeders can manage their programs more efficiently, make better selection decisions, and potentially reduce labor and land costs," said Elizabeth Jones, project manager of GOBII. Michael Olsen, a molecular geneticist at CIMMYT, is test-driving the tools in his work to develop lines of corn that are resistant to maize lethal necrosis, a disease that has devastated corn crops in Kenya. Olsen's research involves 43 separate breeding crosses, bred over five generations.The new tools help him to visualize the relevant genes and identify donor strains that are most likely to successfully interbreed. "The recently released MABC tool developed by JHI with input from the GOBII project was a tremendous time saver this past cycle," said Olsen. "The tool is very well designed for an applied breeding program conducting MABC projects." Next, GOBII will conduct training sessions for the tools at breeding centers in India, Africa, Mexico, the Philippines and at Cornell. The tools can be used to improve any trait in any crop plant. Anyone interested in attending training for these tools or who has questions regarding their use can contact project manager Elizabeth Jones at ej245@cornell.edu. To learn more about Boyce Thompson Institute (BTI) research, visit the BTI website at http://bti. . Connect online with BTI at http://www. and http://www. . Boyce Thompson Institute is a premier life sciences research institution located in Ithaca, New York on the Cornell University campus. BTI scientists conduct investigations into fundamental plant and life sciences research with the goals of increasing food security, improving environmental sustainability in agriculture and making basic discoveries that will enhance human health. BTI employs 150 staff, with scientists from 40 countries around the world and has twice been named as one of the Best Companies in New York State. Its 15 principal investigators are leading minds in plant development, chemical ecology, microbiology and plant pathology, and have access to the institute's state-of-the-art greenhouse facilities with computerized controls and a system of integrated pest management. BTI has one of the largest concentrations of plant bioinformaticists in the U.S., with researchers who work across the entire spectrum of "omics" fields. BTI researchers consistently receive funding from NSF, NIH, USDA and DOE and publish in top tier journals. Throughout its work, BTI is committed to inspiring and educating students and to providing advanced training for the next generation of scientists. For more information, visit http://www. .


Led by scientists at Oxford University, this phase of the project will build on the work carried out in the first two stages, with the ultimate aim being to 'supercharge' photosynthesis in rice by introducing more efficient traits found in other crops. Rice uses the C3 photosynthetic pathway, which in hot dry environments is much less efficient than the C4 pathway used in plants such as maize and sorghum. If rice could be 'switched' to use C4 photosynthesis, it would theoretically increase productivity by 50%. As well as an increase in photosynthetic efficiency, the introduction of C4 traits into rice is predicted to improve nitrogen use efficiency, double water use efficiency, and increase tolerance to high temperatures. And with almost a billion people around the world living in hunger, boosting rice productivity is crucial to achieving long-term food security—particularly in areas such as South Asia and sub-Saharan Africa, where 80% of the food supply is provided by smallholder farmers. Professor Jane Langdale, Professor of Plant Development in the Department of Plant Sciences at Oxford University, and Principal Investigator on Phase III of the C4 Rice Project, said: 'Over 3 billion people depend on rice for survival, and, owing to predicted population increases and a general trend towards urbanization, land that currently provides enough rice to feed 27 people will need to support 43 by 2050. 'In this context, rice yields need to increase by 50% over the next 35 years. Given that traditional breeding programmes currently achieve around a 1% increase in yield per annum, the world is facing an unprecedented level of food shortages.' Professor Langdale added: 'The intrinsic yield of rice, a C3-type grass, is limited by the inherent inefficiency of C3 photosynthesis. Notably, evolution surmounted this inefficiency through the establishment of the C4 photosynthetic pathway, and importantly it did so on multiple independent occasions. This suggests that the switch from C3 to C4 is relatively straightforward. As such, the C4 programme is one of the most plausible approaches to enhancing crop yield and increasing resilience in the face of reduced land area, decreased use of fertilizers, and less predictable supplies of water'. Phases I and II of the programme were focused on identifying new components of the C4 pathway—both biochemical and morphological—as well as validating the functionality of known C4 enzymes in rice. Phase III will refine the genetic toolkit that has been assembled and will focus both on understanding the regulatory mechanisms that establish the pathway in C4 plants and on engineering the pathway in rice. Robert Zeigler of the International Rice Research Institute (IRRI) described the project as 'one of the great undertakings in plant sciences of the early 21st century'. He said: 'Unless we can translate our work into meaningful products adopted by rice farmers worldwide, this will remain simply an academic pursuit. The unique partnerships that characterise this programme should make sure this happens.' Explore further: New, higher-yielding rice plant could ease threat of hunger for poor


News Article | December 14, 2016
Site: globenewswire.com

AMSTERDAM, Netherlands, Dec. 14, 2016 (GLOBE NEWSWIRE) -- Sustainalytics, a leading global provider of ESG and corporate governance research and ratings, today launched ESG Signals, an innovative quantitative tool that provides securities-level financial risk and opportunity signals based on environmental, social and governance (ESG), trading and financial data. ESG Signals analyzes thousands of correlations between variables over time and applies machine learning to extract meaningfully predictive risk/opportunity signals. Sustainalytics developed ESG Signals in collaboration with Advestis, a FinTech company that specializes in machine learning and big data techniques for asset management firms. ESG Signals combines seven years of Sustainalytics’ ESG research on more than 1,600 companies with trading and financial data from Advestis to provide heads of research and portfolio managers with a portfolio monitoring, alerting and investment decision support tool.  In addition, asset managers and index providers can use ESG Signals to develop new products. For every portfolio security, ESG Signals delivers either an opportunity, neutral or risk signal output. To test the findings, Sustainalytics and Advestis applied ESG Signals to a large cap, market weighted index. The index was adjusted to apply three ESG strategies: normative exclusion, best-in-class selection and a combination of the two. The reweighted indices outperformed the benchmark between 110 and 430 basis points annually, depending on the frequency of rebalancing adopted. “For almost 25 years, Sustainalytics has been at the forefront of supporting ESG-related investment strategies,” said Sustainalytics’ President and Chief Operating Officer, Bob Mann. “ESG Signals further underscores our commitment to innovation by exploiting big data techniques, quantitative modeling and machine learning to examine the links between ESG and financial performance factors. Our goal is to help investment managers identify and leverage ESG indicators with the most meaningful predictive value.” To date, ESG integration strategies have been largely qualitative in nature, primarily implemented as part of a qualitative process for risk mitigation.  As ESG factors become increasingly important considerations among mainstream investors, asset managers are looking for investment tools that have the ability to consistently and algorithmically analyze performance-based correlations to identify the most influent variables and in what circumstances they are most influent. “ESG variables provide additional information not fully captured by today’s financial or trading variables,” said Advestis’ CEO Christoph Geissler. “Leveraging Sustainalytics’ high quality research and extensive ESG experience provides investors with a more comprehensive picture of a portfolio company’s risks and opportunities. We are glad to be partnering with  Sustainalytics to develop ESG Signals and applaud them for their commitment to product innovation.” For more information on ESG Signals, please visit here. About Sustainalytics Sustainalytics is an independent ESG and corporate governance research, ratings and analysis firm supporting investors around the world with the development and implementation of responsible investment strategies. With 14 offices globally, Sustainalytics partners with institutional investors who integrate environmental, social and governance information and assessments into their investment processes. Today, the firm has more than 300 staff members, including 170 analysts with varied multidisciplinary expertise of more than 40 sectors. Through the IRRI survey, investors selected Sustainalytics as the best independent responsible investment research firm for three consecutive years, 2012 through 2014 and in 2015, Sustainalytics was named among the top three firms for both ESG and Corporate Governance research.  For more information, visit www.sustainalytics.com. About Advestis Advestis is a Paris-based FinTech that specializes in machine learning and big data techniques for asset management firms. Founded in 2011 by Christopher Geissler, Advestis employs four full-time professionals and is backed by three senior members of its Scientific Advisory board. Geissler is a financial data scientist with more than 30 years of experience in quantitative finance and machine learning. The firm invests more than 75 percent of its revenues in research and development, and has been awarded the ‘Innovating Fintech’ label by Finance Innovation for its work with Sustainalytics on ESG Signals. Advestis’ capital is owned primarily by the founder, members of its Scientific Board, and Quinten, a Paris-based data science company operating primarily in the healthcare and insurance sectors. For more information, visit www.advestis.com/en/. Disclaimer Nothing contained in this press release and tool shall be construed as to make a representation or warranty, express or implied, regarding the advisability to invest in or include companies in investable universes and/or portfolios. The performance represented is historical; past performance is not a reliable indicator of future results and results and the information provided in this press release and tool is not intended to be relied upon as, nor to be a substitute for specific professional advice and in particular financial advice. The information is provided “as is” and, therefore Sustainalytics assumes no responsibility for errors or omissions. Sustainalytics accepts no liability for damage arising from the use of press release, tool or information contained herein in any manner whatsoever.


News Article | December 2, 2016
Site: phys.org

The collaboration works with breeding centers around the world to identify unmet needs and has developed tools to make the process of adding a trait into an existing, high-yield crop variety more efficient. Researchers at the International Maize and Wheat Improvement Center (CIMMYT) are using the tools to develop corn varieties with greater resistance to viruses. Researchers at GOBII, the Genomic and Open-source Breeding Informatics Initiative, worked with developers from the Hutton Institute to build upon the existing data visualization application, Flapjack. Its new tools enable breeders to select the best possible parental lines and help users to perform marker-assisted backcrossing (MABC)—a process that involves repeated breeding with the high-yield parent to ensure that only the desired genes are transferred. Researchers estimate that they can cut a year or two from the four or five years required to develop a new variety. "We have been delighted with this early success of our joint work with the GOBII team at Cornell and anticipate it will form the foundation of a mutually valuable partnership," said David Marshall of the Hutton Institute. Previously, these types of molecular breeding tools only existed within biotech companies. But GOBII, a Cornell-led project funded by the Bill & Melinda Gates Foundation, is tailoring these free tools for breeders in developing countries. They are building data management software in collaboration with the international crops research centers ICRISAT in India, CIMMYT in Mexico and IRRI in the Philippines. "Having the right data management systems and analysis tools can have a huge impact on crop improvement. Breeders can manage their programs more efficiently, make better selection decisions, and potentially reduce labor and land costs," said Elizabeth Jones, project manager of GOBII. Michael Olsen, a molecular geneticist at CIMMYT, is test-driving the tools in his work to develop lines of corn that are resistant to maize lethal necrosis, a disease that has devastated corn crops in Kenya. Olsen's research involves 43 separate breeding crosses, bred over five generations.The new tools help him to visualize the relevant genes and identify donor strains that are most likely to successfully interbreed. "The recently released MABC tool developed by JHI with input from the GOBII project was a tremendous time saver this past cycle," said Olsen. "The tool is very well designed for an applied breeding program conducting MABC projects." Next, GOBII will conduct training sessions for the tools at breeding centers in India, Africa, Mexico, the Philippines and at Cornell. The tools can be used to improve any trait in any crop plant. Explore further: Plant breeders take cues from consumers to improve kale


Verma K.C.,Lovely Professional University | Singh U.S.,IRRI | Verma S.K.,Govind Ballabh Pant University of Agriculture & Technology | Gaur A.K.,University of the Humanities
International Journal of Ambient Energy | Year: 2016

The present study surveys the morphological, biochemical and molecular diversity in 30 accessions of Jatropha collected from different states of India by using random amplified polymorphic DNA (RAPD), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and isozyme analysis. The genotyping data were used to understand the relationships among accessions and to identify genetic diversity as a means for genetic improvement of Jatropha. Out of 37 decamer primers used, 18 yielded polymorphic banding pattern. In total, 126 different DNA bands were reproducibly obtained, out of which 81 were polymorphic. SDS-PAGE of seed, leaf and callus resolved into 18, 12 and 7 bands, while no biotype-specific band was found in leaf and callus protein profile. Cluster analysis of both RAPD and SDS-PAGE data produced two major clusters. © 2013 Taylor & Francis.


Rao A.N.,Indian International Crops Research Institute for the Semi Arid Tropics | Wani S.P.,Indian International Crops Research Institute for the Semi Arid Tropics | Ramesha M.,Indian International Crops Research Institute for the Semi Arid Tropics | Ladha J.K.,IRRI
Weed Technology | Year: 2015

Rice is one of the staple food crops of India, and Karnataka is one of the major rice-producing states. The primary method of rice establishment in Karnataka is transplanting, but farmers are opting to shift to direct-seeding of rice. Weed management is critical for realizing optimal yield of direct-seeded rice (DSR). The objective of this review was to synthesize the published literature on weeds and weed management in rice in Karnataka, identify improved weed-management technologies for delivery to farmers, and suggest research needs. Some 98 weed species are reported to be associated with rice in Karnataka. Weed control to date in Karnataka has mostly been based on herbicides. Hand-weeding was found to be effective in all methods of rice establishment. However, it is time-consuming, tedious, and costly because labor is becoming scarce and unavailable, and labor wages are higher. Several PRE and POST herbicides that were effective in other Asian countries were also found to be effective in managing weeds in rice established by different methods in Karnataka. Bensulfuron plus pretilachlor and pyrazosulfuron in aerobic rice and pendimethalin, thiobencarb, bispyribac-sodium, cyhalofop, fenoxaprop plus chlorimuron plus metsulfuron, and fenoxaprop plus ethoxysulfuron in dry-DSR were found effective in managing weeds. In wet-DSR, butachlor plus safener and pretilachlor plus safener were effective. Thiobencarb, pendimethalin, pretilachlor, azimsulfuron plus metsulfuron, bispyribac-sodium, butachlor, cinosulfuron, oxadiazon, and quinclorac were found promising for weed management in transplanted rice. Integration of herbicides with hand-weeding or intercultivation was found to be effective in rice established by different methods. Options that were found economical in managing weeds varied across the different rice-establishment methods. The need for developing location-specific, sustainable, integrated weed management and extension of available technologies for the farming community in Karnataka is emphasized. Nomenclature: Azimsulfuron; bensulfuron; bispyribac-sodium; butachlor; chlorimuron; cinosulfuron; cyhalofop; ethoxysulfuron; fenoxaprop; metsulfuron; oxadiazon; pendimethalin; pretilachlor; pyrazosulfuron; quinclorac; thiobencarb; rice, Oryza sativa L.


Sharma K.K.,Govind Ballabh Pant University of Agriculture & Technology | Zaidi N.W.,IRRI | Singh U.S.,IRRI
Vegetos | Year: 2012

Species of Trichoderma are being widely used in agriculture as biological agent of plant disease control and biofertilizer for boosting plant growth. In our study, thirty isolates of Trichoderma (T. harzianum and T. virens) obtained from rhizospheric soil samples of different plants and locations of Uttarakhand were evaluated for enhancement of seed germination of paddy, tomato and mustard and their plant growth promotion activity. Maximum seeds germination was recorded with isolates PB 3, 6, 7, 15, 18, 23 & 28 (96.7%) for paddy, PB 23 & 28 (100%) for tomato and PB 28 (100%) for mustard seeds treated with Trichoderma respectively as compare to control in towel paper test. Maximum root length was recorded with isolate PB 15 (80.3%), PB 6 & 30 (60%) and PB 2 & 4 (59.7%) in rice, tomato and mustard respectively. Maximum shoot length was achieved with Isolate PB 8 (38.5%) in rice whereas PB16 promoted maximum shoot growth in both tomato and mustard by 32.1% and 28.7%.


PubMed | Chinese Academy of Sciences, CIRAD - Agricultural Research for Development, IBRIEC, RRI and IRRI
Type: Journal Article | Journal: PloS one | Year: 2015

Tolerance of recurrent mechanical wounding and exogenous ethylene is a feature of the rubber tree. Latex harvesting involves tapping of the tree bark and ethephon is applied to increase latex flow. Ethylene is an essential element in controlling latex production. The ethylene signalling pathway leads to the activation of Ethylene Response Factor (ERF) transcription factors. This family has been identified in Hevea brasiliensis. This study set out to understand the regulation of ERF genes during latex harvesting in relation to abiotic stress and hormonal treatments. Analyses of the relative transcript abundance were carried out for 35 HbERF genes in latex, in bark from mature trees and in leaves from juvenile plants under multiple abiotic stresses. Twenty-one HbERF genes were regulated by harvesting stress in laticifers, revealing an overrepresentation of genes in group IX. Transcripts of three HbERF-IX genes from HbERF-IXc4, HbERF-IXc5 and HbERF-IXc6 were dramatically accumulated by combining wounding, methyl jasmonate and ethylene treatments. When an ethylene inhibitor was used, the transcript accumulation for these three genes was halted, showing ethylene-dependent induction. Subcellular localization and transactivation experiments confirmed that several members of HbERF-IX are activator-type transcription factors. This study suggested that latex harvesting induces mechanisms developed for the response to abiotic stress. These mechanisms probably depend on various hormonal signalling pathways. Several members of HbERF-IX could be essential integrators of complex hormonal signalling pathways in Hevea.

Loading IRRI collaborators
Loading IRRI collaborators