Time filter

Source Type

Duarte, CA, United States

The Irell & Manella Graduate School of Biological science is located at the City of Hope National Medical Center in Duarte, Los Angeles County, Southern California. Wikipedia.

Zhou J.,City of Hope | Shu Y.,University of Cincinnati | Guo P.,University of Cincinnati | Smith D.D.,Beckman Research Institute | And 2 more authors.
Methods | Year: 2011

The potent ability of small interfering RNA (siRNA) to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for diseases including HIV. However, efficient delivery of siRNAs remains a key obstacle to successful application. A targeted intracellular delivery approach for siRNAs to specific cell types is highly desirable. HIV-1 infection is initiated by the interactions between viral glycoprotein gp120 and cell surface receptor CD4, leading to fusion of the viral membrane with the target cell membrane. Once HIV infects a cell it produces gp120 which is displayed at the cell surface. We previously described a novel dual inhibitory anti-gp120 aptamer-siRNA chimera in which both the aptamer and the siRNA portions have potent anti-HIV activities. We also demonstrated that gp120 can be used for aptamer mediated delivery of anti-HIV siRNAs.Here we report the design, construction and evaluation of chimerical RNA nanoparticles containing a HIV gp120-binding aptamer escorted by the pRNA of bacteriophage phi29 DNA-packaging motor. We demonstrate that pRNA-aptamer chimeras specifically bind to and are internalized into cells expressing HIV gp120. Moreover, the pRNA-aptamer chimeras alone also provide HIV inhibitory function by blocking viral infectivity. The Ab' pRNA-siRNA chimera with 2'-F modified pyrimidines in the sense strand not only improved the RNA stability in serum, but also was functionally processed by Dicer, resulting in specific target gene silencing. Therefore, this dual functional pRNA-aptamer not only represents a potential HIV-1 inhibitor, but also provides a cell-type specific siRNA delivery vehicle, showing promise for systemic anti-HIV therapy. © 2011 Elsevier Inc. Source

Ling D.,Beckman Research Institute | Magallanes M.,Beckman Research Institute | Salvaterra P.M.,Beckman Research Institute | Salvaterra P.M.,Irell & Manella Graduate School of Biological Sciences
ASN Neuro | Year: 2014

Abnormal accumulation of Aβ (amyloid β) within AEL (autophagy-endosomal-lysosomal) vesicles is a prominent neuropathological feature of AD (Alzheimer's disease), but the mechanism of accumulation within vesicles is not clear. We express secretory forms of human Aβ1-40 or Aβ1-42 in Drosophila neurons and observe preferential localization of Aβ1-42 within AEL vesicles. In young animals, Aβ1-42 appears to associate with plasma membrane, whereas Aβ1-40 does not, suggesting that recycling endocytosis may underlie its routing to AEL vesicles. Aβ1-40, in contrast, appears to partially localize in extracellular spaces in whole brain and is preferentially secreted by cultured neurons. As animals become older, AEL vesicles become dysfunctional, enlarge and their turnover appears delayed. Genetic inhibition of AEL function results in decreased Aβ1-42 accumulation. In samples from older animals, Aβ1-42 is broadly distributed within neurons, but only the Aβ1-42 within dysfunctional AEL vesicles appears to be in an amyloid-like state. Moreover, the Aβ1-42-containing AEL vesicles share properties with AD-like extracellular plaques. They appear to be able to relocate to extracellular spaces either as a consequence of age-dependent neurodegeneration or a non-neurodegenerative separation from host neurons by plasma membrane infolding. We propose that dysfunctional AEL vesicles may thus be the source of amyloid-like plaque accumulation in Aβ1-42-expressing Drosophila with potential relevance for AD. © 2014 The Author(s). Source

Li Y.,Irell & Manella Graduate School of Biological Sciences | Li Y.,Beckman Research Institute | Shively J.E.,Beckman Research Institute
Experimental Cell Research | Year: 2013

CEACAM1 (Carcinoembryonic Antigen Cell Adhesion molecule 1), an activation induced cell surface marker of T-cells, modulates the T-cell immune response by inhibition of the T-cell and IL-2 receptors. Since T-cells undergo activation induced cell death via Fas activation, it was of interest to determine if this pathway was also affected by CEACAM1. Previously, we identified a novel biochemical interaction between CEACAM1 and the armadillo repeats of Β-catenin in Jurkat cells, in which two critical residues, H469 and K470 of the cytoplasmic domain of CEACAM1-4L played an essential role; while in other studies, Β-catenin was shown to regulate Fas-mediated apoptosis in Jurkat cells. CEACAM1 expression in Jurkat cells leads to the re-distribution of Β-catenin to the actin cytoskeleton as well as inhibition of Β-catenin tyrosine phosphorylation and its degradation after Fas stimulation. As a result, Fas-mediated apoptosis in these cells was inhibited. The K470A mutation of CEACAM1 partially rescued the inhibitory effect, in agreement with the prediction that a CEACAM1-Β-catenin interaction pathway is involved. Although CEACAM1 has two ITIMs, they were not tyrosine-phosphorylated upon Fas ligation, indicating an ITIM independent mechanism; however, mutation of the critical residue S508, located between the ITIMs, to aspartic acid and a prerequisite for ITIM activation, abrogates the inhibitory activity of CEACAM1 to Fas-mediated apoptosis. Since Fas-mediated apoptosis is a major form of activation-induced cell death, our finding supports the idea that CEACAM1 is a general inhibitory molecule for T-cell activation utilizing a variety of pathways. © 2013 Elsevier Inc. Source

Zhou W.,Beckman Research Institute | Zhou W.,Chongqing Medical University | Fong M.Y.,Beckman Research Institute | Min Y.,U.S. National Cancer Institute | And 23 more authors.
Cancer Cell | Year: 2014

Cancer-secreted microRNAs (miRNAs) are emerging mediators of cancer-host crosstalk. Here we show that miR-105, which is characteristically expressed and secreted by metastatic breast cancer cells, is a potent regulator of migration through targeting the tight junction protein ZO-1. In endothelial monolayers, exosome-mediated transfer of cancer-secreted miR-105 efficiently destroys tight junctions and the integrity of these natural barriers against metastasis. Overexpression of miR-105 in nonmetastatic cancer cells induces metastasis and vascular permeability in distant organs, whereas inhibition of miR-105 in highly metastatic tumors alleviates these effects. miR-105 can be detected in the circulation at the premetastatic stage, and its levels in the blood and tumor are associated with ZO-1 expression and metastatic progression in early-stage breast cancer. © 2014 Elsevier Inc. Source

Zhang H.,Irell & Manella Graduate School of Biological Sciences | Zhang H.,Beckman Research Institute | Eisenried A.,Friedrich - Alexander - University, Erlangen - Nuremberg | Zimmermann W.,Labor furTumorimmunologie | Shively J.E.,Beckman Research Institute
PLoS ONE | Year: 2013

CEACAM20, a novel member of the CEACAM1 gene family with expression limited to the lumen of small intestine, testes, and prostate, is co-expressed with CEACAM1 in adult prostate tissue and down-regulated to the same extent as CEACAM1 in prostate cancer. Since prostate cancer often involves loss of epithelial lumen formation, we hypothesized that CEACAM20 and CEACAM1 play important roles in lumen formation of normal prostate epithelium. When prostate cells were grown on Matrigel as a source of extracellular matrix (ECM), they differentiated into acinar structures with single tubules and well-defined lumina closely resembling embryonic prostate organoids. Confocal microscopic analysis revealed restriction of CEACAM20 to acini and CEACAM1 to tubule structures, respectively. Inhibition of CEACAM1 with antibodies or soluble CEACAM1 or antisense oligonucleotides inhibited tubule formation by over 50% while the remaining tubules were stunted. Inhibition of CEACAM20 with antisense oligonucleotides completely inhibited tubule formation and stunted the growth of acini. We conclude that CEACAM20 and CEACAM1 not only mark the lumina of adult prostate tissue but also play a critical role in the vitro generation of prostate organoids. © 2013 Zhang et al. Source

Discover hidden collaborations